✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
物流行业的快速发展对效率、成本和灵活性提出了更高的要求。传统的物流模式在应对复杂环境、突发事件和末端配送等挑战时,往往显得力不从心。近年来,无人机技术日益成熟,其在物流领域的应用潜力备受关注。将无人机与卡车相结合,形成卡车无人机协同运输模式,有望显著提升物流效率,拓展服务范围,并降低运营成本。然而,如何对卡车和无人机的行驶路径进行优化,以充分发挥协同优势,仍是一个亟待解决的问题。本文将深入探讨基于多目标遗传算法NSGA-II的卡车无人机协同路径规划方法,旨在构建一种高效、鲁棒的智能物流解决方案。
一、卡车无人机协同运输模式的优势与挑战
卡车无人机协同运输模式,顾名思义,是指利用卡车作为移动平台,搭载无人机,由卡车负责长距离运输,无人机负责末端配送或特殊场景下的快速送达。这种模式具有以下显著优势:
- 提升末端配送效率:
在人口密度较低、交通拥堵严重的地区,无人机可以快速、灵活地完成包裹的最后几公里配送,有效解决“最后一公里”难题。
- 拓展服务范围:
无人机可以飞越河流、山脉等障碍物,将服务延伸至传统卡车难以到达的偏远地区或应急场景,例如灾后救援物资的运送。
- 降低运营成本:
通过优化卡车和无人机的协同路径,可以减少运输距离、燃油消耗和人力成本,从而降低整体运营成本。
- 提高运输灵活性:
无人机可以根据实时路况和需求,灵活调整配送路线,应对突发事件,提高运输的可靠性和灵活性。
然而,卡车无人机协同运输模式也面临着诸多挑战:
- 路径规划复杂性:
卡车和无人机的行驶速度、续航里程、载重量等特性差异较大,如何协调两者,制定最优的协同路径,是一个复杂的多目标优化问题。
- 无人机续航限制:
无人机的续航里程有限,需要合理规划充电点和飞行距离,确保无人机能够安全返回卡车或目的地。
- 空域安全管理:
无人机需要在特定的空域内飞行,需要遵循严格的空域管理规定,避免安全事故的发生。
- 恶劣天气影响:
无人机容易受到天气影响,如大风、降雨等,需要在路径规划中考虑天气因素,保证运输的安全性。
二、基于NSGA-II的多目标优化方法
针对卡车无人机协同路径规划的复杂性,本文采用多目标遗传算法NSGA-II (Non-dominated Sorting Genetic Algorithm II) 作为优化方法。NSGA-II是一种基于Pareto最优解的多目标优化算法,具有以下优点:
- 处理多个目标函数:
可以同时优化多个目标函数,如运输距离、运营成本、服务时间等,满足实际应用的需求。
- 维持种群多样性:
采用拥挤距离和拥挤比较算子,维持种群的多样性,避免陷入局部最优解。
- 快速非支配排序:
采用快速非支配排序算法,降低计算复杂度,提高算法效率。
- 精英保留策略:
采用精英保留策略,将优秀的个体保留到下一代,保证种群的进化方向。
三、卡车无人机协同路径规划模型
为了应用NSGA-II算法解决卡车无人机协同路径规划问题,需要建立相应的数学模型,具体如下:
- 决策变量:
包括卡车的行驶路径、无人机的起飞地点和降落地点、无人机的飞行路径、无人机的充电地点和时间等。
- 目标函数:
- 最小化总运输距离:
包括卡车行驶的总距离和无人机飞行的总距离。
- 最小化总运营成本:
包括卡车的燃油成本、无人机的电费成本、人力成本等。
- 最小化总服务时间:
包括卡车行驶的时间和无人机飞行的时间。
- 最大化服务质量:
可以通过衡量客户满意度、准时送达率等指标来体现。
- 最小化总运输距离:
- 约束条件:
- 卡车行驶范围约束:
卡车只能在道路网络上行驶,不能越过障碍物。
- 无人机飞行范围约束:
无人机只能在规定的空域内飞行,不能超出续航里程限制。
- 无人机载重约束:
无人机运载的包裹重量不能超过其最大载重能力。
- 时间窗口约束:
某些包裹需要在特定的时间窗口内送达。
- 充电约束:
无人机需要在规定的充电点进行充电,确保电量充足。
- 卡车行驶范围约束:
四、NSGA-II算法的应用流程
将NSGA-II算法应用于卡车无人机协同路径规划问题的具体流程如下:
- 编码:
将卡车和无人机的行驶路径编码成染色体,例如采用路径编码、顺序编码等方式。
- 初始化种群:
随机生成一定数量的染色体,作为初始种群。
- 评估种群:
根据建立的数学模型,计算每个染色体的目标函数值,评估其优劣。
- 非支配排序:
对种群进行快速非支配排序,将染色体划分为不同的等级,等级越高的染色体越优秀。
- 拥挤距离计算:
计算每个染色体的拥挤距离,衡量其周围个体的密度,拥挤距离越大,说明该个体周围的个体越稀疏,更有利于维持种群的多样性。
- 选择:
根据非支配等级和拥挤距离,选择优秀的染色体进入下一代种群。
- 交叉:
对选择的染色体进行交叉操作,产生新的染色体,例如采用单点交叉、多点交叉等方式。
- 变异:
对交叉产生的染色体进行变异操作,引入新的基因,增加种群的多样性,例如采用交换变异、插入变异等方式。
- 合并:
将父代种群和子代种群合并,形成新的种群。
- 迭代:
重复步骤3-9,直到满足终止条件,例如达到最大迭代次数或目标函数值收敛。
- 解码:
将最终得到的染色体解码成卡车和无人机的行驶路径。
⛳️ 运行结果
🔗 参考文献
[1] 蒋利.基于应急物流的"卡车+无人机"协同配送线路优化研究[D].长沙理工大学[2025-04-07].
[2] 刘思亮.面向卡车与无人机协同配送的路径优化模型及算法研究[D].浙江财经大学,2023.
[3] 刘长石,吴张,周愉峰,等.疫区应急物资供应的卡车-无人机动态协同配送路径优化[J].系统科学与数学, 2022, 42(11):17.DOI:10.12341/jssms22266.
[4] 侯仰强,王天琪,岳建锋,等.基于多目标遗传算法的双机器人协调焊接路径规划[J].中国机械工程, 2018, 29(16):6.DOI:10.3969/j.issn.1004-132X.2018.16.014.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇