✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着大数据时代的到来,预测在各个领域都扮演着至关重要的角色。无论是金融市场的波动预测、能源需求的预测、交通流量的预测还是环境污染的预测,准确的预测能力对于制定科学合理的决策具有不可估量的价值。回归预测作为预测问题中的一种重要类型,旨在通过历史数据构建模型,从而预测连续型的目标变量。传统的回归方法,如线性回归、多项式回归等,往往难以捕捉数据中复杂的非线性关系和时序依赖性。近年来,深度学习技术的快速发展为回归预测带来了新的机遇,特别是长短期记忆网络(LSTM)在处理时序数据方面展现出卓越的性能。然而,现实世界的数据往往包含噪声和冗余信息,直接将原始数据输入LSTM模型可能会影响预测精度。奇异谱分析(SSA)作为一种有效的信号分解和重构方法,能够有效提取时序数据中的主要成分和趋势信息,为提高LSTM模型的预测性能提供了可能。
本文旨在探讨基于奇异谱分析(SSA)与长短期记忆网络(LSTM)相结合的SSA-LSTM模型以及经典的LSTM模型在多输入单输出回归预测中的应用。我们将详细阐述这两种模型的理论基础、实现流程,并以MATLAB作为实现平台,通过具体的实例展示其预测性能。本文的结构安排如下:首先,我们将回顾回归预测的基本概念和挑战;其次,详细介绍LSTM网络的原理及其在时序预测中的优势;接着,深入探讨奇异谱分析的原理及其在时序数据处理中的应用;然后,重点阐述SSA-LSTM模型的构建思路和MATLAB实现细节;最后,通过实验对比分析SSA-LSTM与经典LSTM模型在多输入单输出回归预测任务上的表现,并总结研究发现。
1. 回归预测的基本概念与挑战
回归预测是一种统计学和机器学习方法,其目标是建立一个模型,根据一个或多个输入变量(自变量)来预测一个连续型的输出变量(因变量)。在多输入单输出的场景下,模型的输入是多个特征,而输出是一个单一的连续值。回归预测的应用范围极其广泛,例如:
- 金融预测:
根据历史股价、交易量、宏观经济指标等预测未来股价。
- 能源预测:
根据历史能源消耗数据、天气预报、经济活动等预测未来能源需求。
- 气象预测:
根据历史气象数据、地理信息等预测未来气温、降雨量等。
- 交通预测:
根据历史交通流量、时间、天气等预测未来交通拥堵情况。
然而,回归预测面临着诸多挑战:
- 非线性关系:
现实世界中的输入与输出变量之间往往存在复杂的非线性关系,线性模型难以有效捕捉。
- 时序依赖性:
对于时序数据,当前时刻的数值往往与历史时刻的数值存在紧密关联,需要模型能够学习并利用这种时序信息。
- 噪声和异常值:
实际采集的数据往往包含噪声和异常值,这些不良数据会干扰模型的训练和预测精度。
- 特征选择与工程:
如何选择最有价值的输入特征并进行有效的特征工程对于提高模型性能至关重要。
- 模型选择与参数调优:
选择合适的模型并进行有效的参数调优需要经验和专业知识。
深度学习,尤其是循环神经网络(RNN)及其变种LSTM,因其强大的非线性建模能力和处理时序数据的能力,为解决这些挑战提供了新的途径。
2. 长短期记忆网络(LSTM)原理
长短期记忆网络(LSTM)是循环神经网络(RNN)的一种特殊类型,旨在解决传统RNN在处理长序列数据时面临的梯度消失和梯度爆炸问题。LSTM通过引入“门”结构来控制信息的流动,从而有效地学习和记忆长期的时序依赖性。
LSTM的核心结构包含三个重要的门:
- 遗忘门 (Forget Gate):
决定从上一个时刻的细胞状态中“遗忘”哪些信息。遗忘门由一个sigmoid函数控制,输出一个介于0到1之间的向量,其中0表示完全遗忘,1表示完全保留。
- 输入门 (Input Gate):
决定向当前时刻的细胞状态中“输入”哪些新的信息。输入门包含一个sigmoid层和一个tanh层,sigmoid层决定哪些值需要更新,tanh层创建一个新的候选值向量。
- 输出门 (Output Gate):
决定从当前时刻的细胞状态中输出哪些信息。输出门由一个sigmoid层和一个tanh层组成,sigmoid层决定哪些细胞状态的值需要输出,tanh层将细胞状态的值映射到-1到1之间。
通过这些门控机制,LSTM能够在处理时序数据时 selectively remember and forget information,从而更好地捕捉长期的依赖关系。在多输入单输出的回归预测任务中,LSTM的输入可以是一个包含多个特征的序列,输出为一个单一的预测值。
4. 基于SSA-LSTM和LSTM的多输入单输出MATLAB实现
本节将详细介绍基于SSA-LSTM和经典LSTM模型在多输入单输出回归预测中的MATLAB实现流程。
4.1 数据预处理
在进行模型训练之前,需要对原始数据进行预处理,包括:
- 缺失值处理:
对于缺失的数据,可以采用插值、均值填充等方法进行处理。
- 数据归一化:
为了消除不同特征之间量纲的影响,提高模型的训练效率和稳定性,通常需要对数据进行归一化处理,常用的方法包括最小-最大归一化或Z-score标准化。
- 数据集划分:
将数据集划分为训练集、验证集和测试集,用于模型的训练、调优和评估。
4.2 LSTM模型实现
经典LSTM模型在MATLAB中可以通过lstmLayer
函数构建。对于多输入单输出的回归预测任务,输入层的大小应该与输入特征的数量相匹配,输出层为一个全连接层,其输出神经元数量为1,激活函数为线性激活函数。训练过程中,通常使用均方误差(MSE)或均方根误差(RMSE)作为损失函数,并采用Adam、RMSprop等优化算法进行训练。
MATLAB实现流程概览:
- 数据准备:
将预处理后的多输入单输出数据整理成适合LSTM模型输入的格式,通常是一个包含时间步、特征数量和样本数量的三维数组。
- 模型构建:
使用
lstmLayer
、fullyConnectedLayer
等构建LSTM网络结构。 - 指定训练选项:
使用
trainingOptions
设置优化器、学习率、训练轮数等参数。 - 模型训练:
使用
trainNetwork
函数训练模型。 - 模型预测:
使用
predict
函数对测试集进行预测。 - 性能评估:
计算预测结果的评估指标,如MSE、RMSE、MAE等。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇