【车间调度】基于金枪鱼优化算法TSO求解零空闲流水车间调度问题NIFSP附Matlab代码

✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

零空闲流水车间调度问题(No-Idle Flow Shop Scheduling Problem, NIFSP)是生产调度领域的一个重要且具有挑战性的难题。与传统的流水车间调度问题(Flow Shop Scheduling Problem, FSP)不同,NIFSP要求一旦机器开始处理某个工件,就必须连续工作直至该工件在该机器上的加工完成,期间不能有任何空闲时间。这种约束在某些特定的生产环境中尤为重要,例如化工、钢铁生产以及某些连续生产线,旨在提高设备利用率和生产效率。NIFSP属于NP-hard问题,随着工件数量和机器数量的增加,问题的搜索空间呈指数级增长,精确算法往往难以在合理的时间内找到最优解。因此,开发高效的启发式或元启发式算法成为解决NIFSP的关键。

近年来,基于群体智能的优化算法因其良好的全局搜索能力和鲁棒性,被广泛应用于解决各类组合优化问题。金枪鱼优化算法(Tuna Swarm Optimization, TSO)是一种新兴的群体智能算法,模拟了金枪鱼群体在海洋中的觅食、迁徙和围捕等行为。TSO算法具有独特的搜索机制,包括集体运动和逐个搜索,能够在复杂搜索空间中有效地探索和开发。本文旨在探索将金枪鱼优化算法应用于求解零空闲流水车间调度问题,构建基于TSO的求解NIFSP的优化模型和算法框架,并进行实验验证,以评估其求解性能。

关键词: 零空闲流水车间调度问题;金枪鱼优化算法;群体智能;组合优化;元启发式算法

1. 引言

生产调度是制造系统中的核心环节,其目标是合理安排生产资源和任务,以满足生产需求并优化特定性能指标,例如最小化完工时间(makespan)、总流程时间或延迟等。在众多调度问题中,流水车间调度问题(FSP)因其在实际生产中的广泛应用而备受关注。经典的FSP假设机器之间存在缓冲,允许工件在机器之间等待,也允许机器在没有工件可加工时处于空闲状态。然而,在某些特定的生产场景下,机器一旦启动就必须连续运行,直至当前工件加工完毕,不允许出现空闲,这就是零空闲流水车间调度问题(NIFSP)。NIFSP作为FSP的一种特殊情况,其约束条件更加严格,也因此更具挑战性。

NIFSP的严格约束意味着工件在机器上的加工顺序不仅影响完工时间,还直接关系到能否实现零空闲。如果前一个工件在当前机器上完成时间早于后一个工件在前一台机器上的完成时间,则当前机器在处理后一个工件之前会产生空闲。为了避免空闲,调度方案必须精心设计,使得工件在不同机器上的加工尽可能紧密衔接。NIFSP已经被证明是NP-hard问题,这意味着对于大规模问题,找到最优解是计算不可行的。因此,研究高效的启发式或元启发式算法来近似求解NIFSP具有重要的理论和实际意义。

传统的NIFSP求解方法包括分支限界法、动态规划等精确算法,但它们只适用于小规模问题。对于大规模问题,启发式算法如NEH算法及其变种,以及元启发式算法如模拟退火、遗传算法、粒子群优化等被广泛应用。近年来,随着新的群体智能优化算法的不断涌现,为解决NIFSP提供了新的思路和工具。

金枪鱼优化算法(TSO)是一种较新的仿生优化算法,模拟了金枪鱼群体的独特捕食行为。TSO算法通过模拟金枪鱼的两种主要行为模式——集体运动(用于全局探索)和逐个搜索(用于局部开发)——来实现优化过程。其独特的搜索机制使其在处理复杂优化问题时展现出良好的性能。目前,TSO算法已被成功应用于解决一系列优化问题,但在解决NIFSP方面的应用仍处于探索阶段。

本文将重点研究基于金枪鱼优化算法求解零空闲流水车间调度问题。我们将分析NIFSP的数学模型和约束条件,探讨如何将NIFSP的解空间映射到TSO算法的搜索空间,设计基于TSO的NIFSP求解算法框架,并进行实验评估。通过本文的研究,旨在验证TSO算法在求解NIFSP方面的有效性和潜力,为解决实际生产中的零空闲调度问题提供一种新的可行方法。

本文的结构安排如下:第二节回顾相关的零空闲流水车间调度问题研究现状。第三节介绍金枪鱼优化算法的基本原理。第四节详细阐述如何构建基于TSO求解NIFSP的算法框架,包括问题表示、适应度函数、TSO算法的改进以及与其他算法的比较。第五节进行实验设计与分析,评估TSO算法在不同规模NIFSP实例上的性能。第六节总结全文,并展望未来的研究方向。

⛳️ 运行结果

🔗 参考文献

[1] 李杰李艳武.变量块内部迭代算法求解零空闲流水车间问题[J].计算机应用研究, 2022, 39(12):3667-3672.

🎈 部分理论引用网络文献,若有侵权联系博主删除

本主页CSDN博客涵盖以下领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值