时序预测 | Matlab实现基于VMD-WOA-ELM和VMD-ELM变分模态分解结合鲸鱼算法优化极限学习机时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时间序列预测在众多领域具有重要的应用价值,例如金融市场的波动分析、气候变化的趋势预测、电力负荷的规划、交通流量的预警以及疾病传播的建模等。准确的时间序列预测能够为决策者提供关键信息,从而做出更明智的判断和策略。然而,时间序列通常具有复杂的特性,如非线性、非平稳性、噪声以及多尺度特征,这使得精确预测成为一项具有挑战性的任务。

传统的线性预测模型,如自回归模型(AR)、移动平均模型(MA)以及自回归移动平均模型(ARMA),虽然在处理线性时间序列方面取得了一定的成功,但在面对具有显著非线性特征的时间序列时,其预测精度往往会受到限制。随着人工智能技术的飞速发展,非线性模型,特别是基于神经网络的模型,展现出了强大的非线性拟合能力,在时间序列预测领域取得了显著进展。

极限学习机(Extreme Learning Machine, ELM)作为一种单隐层前馈神经网络,因其训练速度快、泛化能力强等优点,受到了广泛关注。ELM随机初始化输入层权重和隐层偏置,并通过解析求解输出层权重,大大简化了训练过程。然而,ELM的性能对输入数据的质量和模型的参数选择敏感,直接使用原始的复杂时间序列进行预测,可能难以充分发挥其优势。

为了提高时间序列预测的精度,一种常见的策略是将时间序列进行分解,提取其不同尺度的特征,然后分别或组合预测。变分模态分解(Variational Mode Decomposition, VMD)是一种新兴的信号分解技术,它能够将复杂的信号分解为一系列具有窄带特性的本征模态函数(Intrinsic Mode Functions, IMFs)。相比于传统的经验模态分解(Empirical Mode Decomposition, EMD),VMD具有更好的理论基础和抗噪声能力,能够有效避免模态混叠问题。将时间序列分解为多个IMFs后,每个IMF通常具有更简单的结构和更小的变化幅度,这有助于提高后续预测模型的性能。

然而,分解后的IMFs并非完全独立,它们之间可能存在复杂的非线性关系。同时,直接将所有IMFs输入到ELM模型中进行预测,可能会增加模型的复杂度和过拟合风险。因此,如何有效地利用分解后的IMFs,并进一步优化预测模型的性能,是提高预测精度的关键。

在基于分解的时间序列预测框架下,模型的参数选择对预测性能具有显著影响。ELM模型的性能受隐层神经元数量等参数的影响,而这些参数通常需要通过经验或试错的方式来确定,这既耗时又难以保证最优。为了解决这一问题,利用智能优化算法来搜索ELM的最优参数成为一种有效的途径。鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种基于鲸鱼觅食行为的群智能优化算法,它具有原理简单、参数少、收敛速度快等优点,在求解各种优化问题中表现出了良好的性能。将WOA应用于ELM参数的优化,有望进一步提升模型的预测能力。

基于上述分析,本文旨在研究基于VMD-WOA-ELM和VMD-ELM的时间序列预测方法。首先,利用VMD将原始时间序列分解为多个IMFs。然后,对于VMD-WOA-ELM方法,利用WOA优化ELM的关键参数,并使用优化后的ELM对每个IMF进行预测。最后,将各IMF的预测结果进行重构得到最终的预测结果。作为对比,本文也研究了VMD-ELM方法,即在没有WOA优化的前提下,直接使用ELM对各IMF进行预测,并重构结果。通过比较这两种方法的预测性能,旨在验证WOA优化在提升ELM预测性能方面的有效性,并探索基于VMD分解和智能优化算法结合ELM的时间序列预测方法的潜力。

  1. 相关工作回顾

时间序列预测方法种类繁多,大致可以分为统计模型、机器学习模型以及组合模型。

统计模型:典型的包括ARIMA模型、指数平滑法等。这类模型基于时间序列的统计特性进行建模,对数据的平稳性要求较高。对于具有复杂非线性和非平稳性的时间序列,统计模型的预测精度往往有限。

机器学习模型:包括支持向量机(Support Vector Machine, SVM)、人工神经网络(Artificial Neural Network, ANN)、循环神经网络(Recurrent Neural Network, RNN)以及其变种长短期记忆网络(Long Short-Term Memory, LSTM)等。这些模型具有强大的非线性拟合能力,在处理非线性时间序列方面取得了显著进展。然而,这些模型通常需要大量的训练数据,并且训练过程可能耗时且参数调节复杂。

基于分解的预测方法:为了处理复杂时间序列的非平稳性,许多研究将时间序列分解技术与预测模型结合。常用的分解方法包括经验模态分解(EMD)及其改进算法(如集合经验模态分解 EEMD)、小波分解以及本文重点研究的变分模态分解(VMD)。分解后的子序列通常更容易建模和预测。例如,许多研究将EMD或VMD与神经网络、SVM等模型结合,取得了比直接预测更好的效果。

基于优化算法的预测方法:智能优化算法被广泛应用于机器学习模型的参数优化,以提升模型性能。例如,遗传算法(Genetic Algorithm, GA)、粒子群优化(Particle Swarm Optimization, PSO)、鲸鱼优化算法(WOA)等被用于优化神经网络的权重、隐层节点数等参数。将智能优化算法与ELM结合,优化ELM的输入权重、隐层偏置或隐层节点数,已经被证明能够有效提高ELM在分类和回归问题上的性能。

虽然已有研究将VMD与ELM结合用于时间序列预测,也有些研究将智能优化算法与ELM结合,但将VMD分解、WOA优化和ELM预测相结合用于时间序列预测的研究相对较少。本文旨在深入探讨VMD-WOA-ELM模型的预测性能,并与VMD-ELM模型进行对比,以全面评估WOA优化在这一集成框架中的作用。

  1. 方法论

本文提出的基于VMD-WOA-ELM和VMD-ELM的时间序列预测方法主要包括以下几个步骤:

2.1 变分模态分解(VMD)

VMD是一种自适应的非递归信号分解方法,其核心思想是将原始信号分解为一组预设数量的本征模态函数(IMFs),每个IMF都是一个具有窄带特性的调幅调频信号。VMD的优化目标是最小化所有IMFs的带宽之和,同时确保所有IMFs之和能够重构原始信号。具体的数学描述涉及变分问题的构建和求解,通常通过交替方向乘子法(Alternating Direction Method of Multipliers, ADMM)来实现。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值