【信号检测】基于深度学习的NOMA系统中信号检测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言​

随着 5G 及未来通信技术的快速发展,非正交多址接入(NOMA)技术因其能有效提升频谱效率和系统容量,成为通信领域的研究热点。在 NOMA 系统中,多个用户共享相同的时频资源,这使得信号检测面临诸多挑战,传统检测方法在复杂信道环境下性能受限。深度学习凭借强大的特征提取和数据处理能力,为 NOMA 系统信号检测提供了全新的解决方案。本文将深入研究基于深度学习的 NOMA 系统信号检测方法,探索其在实际应用中的潜力。​

二、NOMA 系统与信号检测概述​

2.1 NOMA 系统原理​

NOMA 系统打破了传统正交多址接入技术对时频资源的严格划分,采用功率复用的方式,让多个用户在相同的时频资源上同时传输信号。通过在发射端对不同用户的信号进行叠加编码,并根据用户信道条件分配不同的发射功率,在接收端利用串行干扰消除(SIC)等技术分离出各用户信号 。这种方式能够显著提升系统的频谱效率和用户接入数量。​

2.2 信号检测的重要性与挑战​

信号检测是 NOMA 系统接收端的关键环节,其准确性直接影响通信质量。在 NOMA 系统中,由于多个用户信号叠加传输,存在严重的多址干扰,同时信道衰落、噪声等因素也会对信号检测造成干扰 。传统的信号检测方法,如最大似然检测(MLD)、最小均方误差检测(MMSE)等,在复杂信道环境下计算复杂度高,检测性能难以满足需求,因此亟需更高效的检测方法。​

三、基于深度学习的 NOMA 系统信号检测模型构建​

3.1 网络结构设计​

卷积神经网络(CNN):CNN 具有强大的特征提取能力,可有效提取信号中的空间特征。在 NOMA 信号检测中,将接收信号作为 CNN 的输入,通过卷积层、池化层等对信号进行特征提取和降维,最后通过全连接层输出检测结果 。​

循环神经网络(RNN)及其变体:考虑到信号的时间序列特性,RNN 及其变体如长短期记忆网络(LSTM)、门控循环单元(GRU)可用于处理序列信号。这些网络能够捕捉信号在时间维度上的依赖关系,对于处理因信道衰落等因素导致的时变信号具有优势 。​

混合网络结构:结合 CNN 和 RNN 的优点,构建混合网络结构。例如,先利用 CNN 提取信号的空间特征,再将其输出作为 RNN 的输入,进一步处理时间序列信息,以提高信号检测的准确性 。​

3.2 训练与优化​

数据集生成:通过仿真生成大量的 NOMA 系统接收信号数据,包括不同用户数量、信道条件、信噪比(SNR)下的信号样本,并标注正确的用户信号信息,用于训练深度学习模型 。​

损失函数选择:根据信号检测的目标,选择合适的损失函数。如均方误差(MSE)损失函数可用于回归问题,交叉熵损失函数适用于分类问题 。在 NOMA 信号检测中,可根据检测任务的具体需求选择相应的损失函数 。​

优化算法:采用随机梯度下降(SGD)及其变体,如自适应矩估计(Adam)算法对模型进行训练优化。通过不断调整模型参数,使损失函数最小化,从而提高模型的检测性能

⛳️ 运行结果

🔗 参考文献

[1] 王小明,朱盼,徐友云,等.一种基于深度学习的MIMO-NOMA系统信号检测方法及系统:CN202111282370.5[P].CN202111282370.5[2025-04-30].

[2] 王建平,陈光岚,冯启高,等.ResNet-UAN-AUD:基于深度学习的水声上行非正交多址通信系统活动用户检测方法[J].传感技术学报, 2024, 37(6):985-996.DOI:10.3969/j.issn.1004-1699.2024.06.008.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值