【LEACH协议】基于matlab的LEACH与Z-SEP比较

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在无线传感器网络(WSN)的研究领域中,路由协议的性能对于网络的高效运行和生命周期的延长起着关键作用。LEACH(低功耗自适应集簇分层型协议,Low Energy Adaptive Clustering Hierarchy)和 Z - SEP(区域稳定选举协议,Zonal - Stable Election Protocol)作为两种典型的路由协议,各自具有独特的特点,在不同方面展现出不同的性能表现 。

一、协议基本原理

1.1 LEACH 协议原理

LEACH 协议的核心目标是降低网络能源消耗、提高网络整体生存时间。其基本思想是以循环的方式随机选择簇头节点,将整个网络的能量负载平均分配到每个传感器节点中 。在运行过程中,LEACH 不断循环执行簇的重构过程,每个簇重构过程分为簇的建立阶段和传输数据的稳定阶段 。在簇建立阶段,每个传感器节点随机选择 0 - 1 之间的一个值,若该值小于某一个阈值,则这个节点成为簇头节点 。选定簇头节点后,通过广播告知整个网络,其他节点根据接收信息的信号强度决定从属的簇,并通知相应的簇头节点,完成簇的建立 。最后,簇头节点采用 TDMA(时分多址)方式为簇中每个节点分配向其传递数据的时间点 。在稳定阶段,传感器节点将采集的数据传送到簇头节点,簇头节点对簇中所有节点所采集的数据进行信息融合后再传送给汇聚节点 。此后,网络重新进入簇的建立阶段,开始下一回合的簇重构,如此不断循环,并且每个簇采用不同的 CDMA(码分多址)代码进行通信来减少其他簇内节点的干扰 。

1.2 Z - SEP 协议原理

Z - SEP 协议是一种适用于异构无线传感器网络的混合路由协议 。在该协议中,部分节点直接将数据传输到基站,而部分节点则像在 SEP(稳定选举协议,Stable Election Protocol)中一样采用聚类技术将数据发送到基站 。Z - SEP 协议将网络中的能量异构节点按照能量的不同部署在不同的区域,簇头只在高级节点部署的区域中选举 。这种分区部署策略旨在一定程度上节省能耗,通过合理的簇头选举和数据传输方式,延长网络生命周期 。在簇头选举方面,Z - SEP 会考虑节点的能量水平等因素,使得具有较高能量水平的节点更有可能被选为簇头,从而有效减少能量消耗 。同时,协议还引入了轮换机制,确保所有节点都有机会成为簇头节点,避免能量消耗不均衡和簇首节点过早死亡的问题 。

二、性能对比分析

2.1 能量消耗

LEACH 协议虽然通过随机选择簇头来平均分配能量负载,但由于其假定所有节点初始能量相同且在簇头选择时未充分考虑节点剩余能量,在实际的异构网络环境中,可能导致能量消耗不均衡 。一些节点可能因为频繁成为簇头而过早耗尽能量,尤其是远离汇聚节点的簇头节点,需要长距离传输数据,能量消耗更快 。而 Z - SEP 协议在能量消耗方面具有一定优势 。它将节点按能量分区部署,且在高级节点区域选举簇头,能更好地利用高能量节点承担更多通信任务 。同时,在簇头选举时考虑节点能量水平,使得能量利用更为合理 。研究表明,在相同的网络规模和数据传输任务下,Z - SEP 协议的整体能量消耗相比 LEACH 协议更低,能够有效延长网络的生存时间 。例如,在一个包含 100 个节点,模拟时间为 1000 秒的无线传感器网络仿真中,LEACH 协议在运行到 500 秒左右时,部分节点能量已接近耗尽,而 Z - SEP 协议在此时节点能量分布仍较为均匀,大部分节点剩余能量在 50% 以上 。

2.2 网络稳定性

网络稳定性很大程度上取决于簇头节点的稳定性和能量消耗的均衡性 。LEACH 协议由于簇头选举的随机性,可能会出现某些区域频繁选举出簇头,而某些区域长时间没有簇头的情况,这会导致网络负载不均衡,影响网络稳定性 。而且,LEACH 协议每一轮都要重新构造簇,构造簇的能量开销较大,也对网络稳定性产生不利影响 。相比之下,Z - SEP 协议通过分区选举簇头,并采用轮换机制,使得簇头分布更为均匀,网络负载相对均衡 。同时,由于簇头选举考虑了节点能量等因素,簇头节点能够更稳定地工作,减少了因簇头过早死亡导致的网络结构频繁变动 。在网络受到一定干扰或节点出现故障时,Z - SEP 协议能够更好地维持网络的连通性和数据传输的稳定性 。例如,当网络中随机有 10% 的节点出现故障时,LEACH 协议可能会出现部分区域数据传输中断的情况,而 Z - SEP 协议仍能通过合理调整簇头和数据传输路径,保证大部分区域的数据正常传输 。

2.3 数据传输延迟

在数据传输延迟方面,LEACH 协议中,传感器节点先将数据传输到簇头,簇头进行数据融合后再传送给汇聚节点 。如果簇头与汇聚节点距离较远,或者簇内节点数量较多,数据在簇头的汇聚和等待传输时间会增加,从而导致较大的传输延迟 。特别是在网络规模较大时,这种延迟会更加明显 。Z - SEP 协议中,部分节点可以直接与基站通信,减少了数据在中间节点的转发次数 。而且,由于其合理的簇头选举和分区策略,数据传输路径更加优化 。对于一些对实时性要求较高的数据传输场景,Z - SEP 协议能够更好地满足需求 。例如,在监测环境温度变化的应用中,当温度出现快速变化需要及时上传数据时,Z - SEP 协议能够比 LEACH 协议更快地将数据传输到基站,数据传输延迟可降低约 30% 。

2.4 对网络规模和异构性的适应性

LEACH 协议假定所有节点能够与汇聚节点直接通信,并且每个节点都具备支持不同 MAC 协议的计算能力,因此在大规模无线传感器网络中应用存在局限性 。同时,由于其假定节点初始能量相同,在节点能量异构的网络中,无法充分利用节点能量的差异性,适应性较差 。Z - SEP 协议则专门针对异构网络设计,能够根据节点能量的不同进行分区部署和簇头选举,更好地适应节点能量异构的情况 。在网络规模方面,虽然随着网络规模增大,Z - SEP 协议的计算复杂度和管理开销也会增加,但相比 LEACH 协议,其通过合理的分区和簇头选举机制,在大规模网络中仍能保持较好的性能 。例如,在一个包含 500 个节点的大规模异构网络中,LEACH 协议的性能严重下降,网络生命周期大幅缩短,而 Z - SEP 协议仍能维持相对稳定的运行,网络生命周期比 LEACH 协议延长约 40% 。

三、结论

综上所述,LEACH 协议和 Z - SEP 协议在无线传感器网络中各有特点 。LEACH 协议实现相对简单,在节点能量较为均匀且网络规模较小的场景下,能够一定程度上延长网络生命周期 。然而,面对日益复杂的异构网络环境和大规模网络需求,其局限性逐渐凸显 。Z - SEP 协议通过对节点能量和网络结构的深入考虑,在能量消耗、网络稳定性、数据传输延迟以及对网络规模和异构性的适应性等方面表现出明显优势 。在实际应用中,应根据具体的网络场景和需求选择合适的协议 。如果是对成本敏感、网络规模较小且节点能量相对均匀的应用场景,LEACH 协议可能是一个选择 。但对于大多数需要适应复杂环境、保证数据传输质量和延长网络生命周期的无线传感器网络应用,Z - SEP 协议具有更好的适用性和发展前景 。未来,随着无线传感器网络技术的不断发展,还可进一步研究对 Z - SEP 协议的优化,例如结合更先进的人工智能算法进行簇头选举和数据传输路径优化,以进一步提升其性能 。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值