时序预测 | 基于VMD-SSA-LSSVM+LSTM多变量时间序列预测模型(Matlab)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

基于 VMD-SSA-LSSVM+LSTM 的多变量时间序列预测模型结合了变分模态分解(VMD)、麻雀搜索算法(SSA)、最小二乘支持向量机(LSSVM)和长短期记忆网络(LSTM)的优势,能够更有效地处理多变量时间序列数据,提高预测的准确性。下面详细介绍该模型的原理、构建步骤和优势等方面:

1. 模型原理

  • 变分模态分解(VMD)

    :VMD 是一种自适应的信号分解方法,它将多变量时间序列分解为多个不同频率的子序列。通过最小化变分模型,VMD 能够准确地分离出时间序列中的不同成分,减少噪声和复杂趋势的影响,使得后续的分析更加容易。例如,在电力负荷时间序列中,VMD 可以将负荷数据分解为不同频率的分量,如高频的波动分量和低频的趋势分量。

  • 麻雀搜索算法(SSA)

    :SSA 是一种基于麻雀觅食行为的优化算法。在该模型中,SSA 用于优化最小二乘支持向量机(LSSVM)的参数。SSA 通过模拟麻雀的觅食和反捕食行为,在参数空间中搜索最优的 LSSVM 参数(如惩罚参数和核函数参数),以提高 LSSVM 的预测性能。

  • 最小二乘支持向量机(LSSVM)

    :LSSVM 是支持向量机(SVM)的一种变体,它将二次规划问题转化为线性方程组的求解,降低了计算复杂度。LSSVM 通过寻找最优超平面来进行时间序列的预测,对于多变量时间序列数据,LSSVM 能够捕捉变量之间的关系,实现准确的预测。

  • 长短期记忆网络(LSTM)

    :LSTM 是循环神经网络(RNN)的一种特殊类型,它通过门控机制解决了传统 RNN 中的梯度消失和梯度爆炸问题,能够有效地处理长序列数据。在多变量时间序列预测中,LSTM 可以学习到时间序列的长期依赖关系,对于具有复杂时间结构的数据具有较好的预测效果。

2. 模型构建步骤

  1. 数据预处理

    :对多变量时间序列数据进行清洗、归一化等预处理操作,以提高数据的质量和模型的性能。

  2. VMD 分解

    :使用 VMD 将多变量时间序列分解为多个子序列,每个子序列代表时间序列的不同特征。

  3. SSA 优化 LSSVM

    :将分解后的子序列作为 LSSVM 的输入,利用 SSA 优化 LSSVM 的参数,得到优化后的 LSSVM 模型。

  4. LSTM 建模

    :将优化后的 LSSVM 预测结果作为 LSTM 的输入,构建 LSTM 模型进行进一步的预测。LSTM 可以学习到时间序列的动态变化和长期依赖关系,提高预测的准确性。

  5. 模型评估

    :使用合适的评估指标(如均方误差、平均绝对误差等)对模型进行评估,验证模型的预测性能。

3. 模型优势

  • 有效处理复杂数据

    :VMD 能够分解时间序列中的不同成分,使得 LSSVM 和 LSTM 能够更好地处理数据中的噪声和复杂趋势。

  • 参数优化

    :SSA 优化 LSSVM 的参数,提高了 LSSVM 的预测精度,使得模型能够更好地适应多变量时间序列数据。

  • 捕捉长期依赖

    :LSTM 的门控机制使其能够有效地捕捉时间序列的长期依赖关系,对于具有复杂时间结构的多变量时间序列具有较好的预测效果。

  • 提高预测准确性

    :该模型结合了多种方法的优势,能够更准确地预测多变量时间序列的未来值,在电力负荷预测、金融时间序列预测等领域具有广泛的应用前景。

基于 VMD-SSA-LSSVM+LSTM 的多变量时间序列预测模型通过合理的组合和优化,能够更有效地处理多变量时间序列数据,提高预测的准确性和可靠性。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

   % 清空变量

clc                     % 清空命令行

%%  导入数据

res = xlsread('data.xlsx');

%%  数据分析

num_size = 0.8;                              % 训练集占数据集比例

outdim = 1;                                  % 最后一列为输出

num_samples = size(res, 1);                  % 样本个数

res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)

num_train_s = round(num_size * num_samples); % 训练集样本个数

f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集

P_train = res(1: num_train_s, 1: f_)';

T_train = res(1: num_train_s, f_ + 1: end)';

M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';

T_test = res(num_train_s + 1: end, f_ + 1: end)';

N = size(P_test, 2);

%%  数据归一化

[P_train, ps_input] = mapminmax(P_train, 0, 1);

P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值