TCN-BiLSTM-Attention多变量时间序列预测(Matlab完整源码和数据)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

TCN(时间卷积网络)、BiLSTM(双向长短期记忆网络)和 Attention(注意力机制)相结合的模型在多变量时间序列预测中展现出强大的能力,以下从模型各部分原理、组合方式、模型训练及应用优势等方面进行介绍:

1. 模型各部分原理

  • TCN(时间卷积网络)

    :TCN 是一种专门处理时间序列数据的卷积神经网络。它通过因果卷积(确保当前时刻的输出仅依赖于过去的输入)和扩张卷积(增加网络对长序列的处理能力,捕捉更长时间范围的信息),能够有效地提取时间序列中的特征。在多变量时间序列预测中,TCN 可以同时处理多个变量的时间序列,挖掘变量之间的空间和时间依赖关系。

  • BiLSTM(双向长短期记忆网络)

    :BiLSTM 是长短期记忆网络(LSTM)的扩展,它由前向 LSTM 和后向 LSTM 组成。前向 LSTM 从序列的开头向结尾学习信息,后向 LSTM 从序列的结尾向开头学习信息,然后将两者的输出进行合并。这种双向学习的方式能够更好地捕捉时间序列中的长期依赖关系,对于多变量时间序列中不同变量之间的相互影响有较好的学习能力。

  • Attention(注意力机制)

    :注意力机制能够使模型在处理多变量时间序列数据时,自动学习不同时间步和不同变量之间的重要性权重。通过计算注意力分数,模型可以聚焦于对预测结果影响较大的信息,抑制无关信息的干扰,从而提高预测的准确性。

2. 模型组合方式

  1. 数据输入

    :将多变量时间序列数据进行预处理,如归一化等,然后输入到模型中。

  2. TCN 特征提取

    :数据首先经过 TCN 层,通过卷积操作提取时间序列的局部特征和长程依赖特征。TCN 层的输出反映了多变量时间序列的特征表示。

  3. BiLSTM 进一步处理

    :TCN 层的输出输入到 BiLSTM 中,BiLSTM 利用其双向学习的特性,进一步捕捉时间序列的长期依赖关系和变量之间的相互作用。

  4. Attention 应用

    :BiLSTM 的输出经过注意力机制,计算不同时间步和变量的注意力分数,对 BiLSTM 的输出进行加权求和,突出重要信息,抑制次要信息。

  5. 输出预测结果

    :最后,经过注意力机制处理后的结果输入到全连接层,通过全连接层输出预测结果,实现多变量时间序列的预测。

3. 模型训练

  1. 损失函数选择

    :常用的损失函数如均方误差(MSE),用于衡量预测值与真实值之间的差异。对于多变量时间序列预测,MSE 可以综合考虑多个变量的预测误差。

  2. 优化器选择

    :常见的优化器如 Adam 优化器,通过调整模型的参数,使损失函数最小化。Adam 优化器结合了自适应学习率和动量的优点,能够快速收敛。

  3. 训练过程

    :将多变量时间序列数据划分为训练集和测试集,使用训练集对模型进行训练,通过反向传播算法更新模型的参数。在训练过程中,可以使用早停法等技术防止模型过拟合。

4. 应用优势

  • 处理复杂依赖关系

    :TCN 和 BiLSTM 的结合能够有效地处理多变量时间序列中的长期依赖关系和变量之间的相互作用,注意力机制进一步增强了模型对重要信息的捕捉能力。

  • 提高预测准确性

    :通过对多变量时间序列的特征提取和信息融合,模型能够更准确地预测时间序列的未来值,在电力负荷预测、气象数据预测、金融时间序列预测等领域有广泛的应用。

  • 鲁棒性强

    :模型对噪声和异常值具有一定的鲁棒性,能够在不同的数据集上保持较好的预测性能。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

% TCN-LSTM-Attention多变量时间序列预测,运行环境Matlab2023及以上

%% 清空环境变量

warning off % 关闭报警信息

close all % 关闭开启的图窗

clear % 清空变量

clc % 清空命令行

%% 导入数据

result = xlsread('data.xlsx');

%% 数据分析

num_samples = length(result); % 样本个数

or_dim = size(result, 2); % 原始特征+输出数目

kim = 4; % 延时步长(kim个历史数据作为自变量)

zim = 1; % 跨zim个时间点进行预测

%% 划分数据集

for i = 1: num_samples - kim - zim + 1

res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];

end

%% 数据集分析

outdim = 1; % 最后一列为输

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值