考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化附Matlab代码

✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

本文探讨在阶梯式碳交易机制下,电制氢技术融入综合能源系统(Integrated Energy System, IES)后,如何优化系统热电联产,以实现经济效益与环境效益的双赢。通过建立考虑碳排放成本和电制氢技术特性的综合能源系统优化模型,分析不同碳价水平下系统运行策略的变化,并评估阶梯式碳交易机制对系统结构和运行效率的影响。研究结果表明,阶梯式碳交易机制能够有效激励综合能源系统采用更清洁的能源和更优化的运行模式,促进电制氢技术的推广应用,最终实现系统的低碳化和高效化。

一、引言

全球气候变化日益严峻,减少碳排放已成为全球共识。碳交易机制作为一种有效的市场化减排手段,近年来受到广泛关注。阶梯式碳交易机制,相较于线性碳价机制,更能体现碳排放的非线性环境成本,并通过逐步提高碳价来激励企业持续减排。同时,氢能作为一种清洁能源载体,其制备和利用技术日益成熟,特别是电制氢技术,因其利用可再生能源发电制氢,具有显著的减碳潜力。将电制氢技术融入综合能源系统,构建以电制氢为核心的多能源互补系统,能够显著提升系统能源效率和环境效益。

然而,现有文献对阶梯式碳交易机制下,电制氢技术在综合能源系统中的优化调度研究相对较少。本文拟通过构建一个考虑阶梯式碳交易机制和电制氢技术的综合能源系统优化模型,分析不同碳价水平下系统的运行策略,并评估阶梯式碳交易机制对系统效率和减排效果的影响。

二、阶梯式碳交易机制

阶梯式碳交易机制摒弃了传统固定碳价或线性碳价的简单模式,根据碳排放水平的不同划分多个阶梯区间,为每个区间设定差异化的碳价。这种机制的设计基于碳排放的边际环境成本递增理论,即随着碳排放的增加,其对环境造成的危害加速上升,因此需要更高的碳价来约束。

在实际应用中,确定阶梯碳价区间和对应价格需综合考量多方因素。首先是行业基准,分析不同行业的历史碳排放数据和生产工艺,确定各行业合理的碳排放基准线,以此为基础划分阶梯。例如,对于能源密集型的钢铁行业,其碳排放量大,基准线设定相对较高,阶梯划分也更为细致;而对于电子信息等低排放行业,基准线较低,阶梯设置相对简单。其次,要考虑国家和地区的碳减排目标,若目标较为激进,则碳价上升梯度应更陡峭,以更强力地推动企业减排。再者,市场的承受能力也不容忽视,过高的碳价可能给企业带来难以承受的成本压力,影响经济发展,因此需在减排效果与经济可行性间寻求平衡。

该机制对综合能源系统产生多方面影响。从能源结构角度,促使系统更多地采用低碳或零碳能源。高碳价阶梯使得传统燃煤发电成本大幅增加,企业会倾向于投资风电、光伏等可再生能源发电,以及搭配电制氢等低碳技术。以某工业园区的综合能源系统为例,在实施阶梯式碳交易机制前,燃煤发电占比达 60%,机制实施后,随着碳价在高排放阶梯不断攀升,两年内燃煤发电占比降至 30%,风电和光伏装机容量显著提升。从运行模式来看,激励系统优化能源转换和存储环节。例如,鼓励高效的热电联产机组提升能源利用效率,减少整体碳排放;推动电制氢及储氢技术的应用,在电力过剩时将电能转化为氢能存储,在电力需求高峰或低碳能源供应不足时,再将氢能转化为电能或热能,既消纳了过剩电力,又降低了系统运行过程中的碳排放。

三、电制氢技术在综合能源系统中的作用

3.1 电制氢技术原理与分类

电制氢即通过电解水的方式将电能转化为化学能存储在氢气中。其基本原理是在电解槽中,水在直流电的作用下分解为氢气和氧气。目前主要的电制氢技术包括碱性水电解(ALK)、质子交换膜水电解(PEM)、阴离子交换膜水电解(AEM)和固体氧化物水电解(SOEC)。

碱性水电解制氢技术最为成熟,以 20%-30% 的 KOH 溶液为电解液,工作电流密度一般在 0.2 - 0.5A/cm²,能耗处于 4.5 - 5.5kWh/m³H₂。但该技术存在一些弊端,如采用的多孔陶瓷或聚合物膜物理隔膜导致动态响应迟缓,碱液易腐蚀设备,压力 - 液位控制难度大,还存在串气安全隐患。质子交换膜水电解制氢则选用全氟磺酸质子交换膜作为固体电解质,可直接用纯水电解,避免了碱液相关问题,如碱液与 CO₂反应产生堵塞及泄露污染等。其电解槽采用零间隙结构,体积紧凑,工作电流密度大于 1A/cm²,直流电耗降低至 4.0 - 5.0kWh/m³H₂,产生的氢气纯度高(>99.99%)、压力大(3 - 7MPa),且动态响应速度快,负荷范围宽,与波动性可再生能源电力系统适配性佳。阴离子交换膜水电解技术使用气密性良好、电阻性低且成本较低的阴离子交换膜替代隔膜,解决了碱性电解的串气问题,可降低碱液浓度并提高电流密度,不过目前技术尚不成熟,膜寿命难以满足大规模商业化需求。固体氧化物水电解技术采用全固态电解槽设计,工作温度高达 600℃以上,虽具有一定优势,但对材料在高温下的化学稳定性、热机械稳定性以及高温密封要求极高,限制了其推广应用。

3.2 电制氢技术对综合能源系统的影响

在能源存储方面,电制氢极大地丰富了综合能源系统的储能手段。传统的电池储能受限于能量密度、充放电循环次数等问题,难以满足大规模、长时间的储能需求。而氢气具有能量密度高的特点,能够实现大规模的能量存储。在可再生能源发电充裕时,通过电制氢将多余电能转化为氢能存储,可有效平抑可再生能源的波动性。例如,在风电场附近配套建设电制氢设施,当风力发电过剩时,将电能用于制氢并储存,避免了弃风现象;在电力需求高峰或风电不足时,再将储存的氢气通过燃料电池或燃气轮机发电,保障电力稳定供应。

从能源转换角度,电制氢促进了能源的多元化转换和协同利用。一方面,氢气可作为燃料直接用于供热或发电,如氢燃料电池热电联供系统,能够高效地产生电能和热能,满足用户的综合用能需求,且排放近乎为零;另一方面,氢气还可与二氧化碳通过甲烷化反应合成甲烷,实现碳循环利用,同时将电能转化为化学能储存于甲烷中,进一步拓展了能源转换路径,提高了系统的能源利用灵活性和效率。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

本主页CSDN博客涵盖以下领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值