【区间预测】 Matlab实现GRU-Attention-KDE核密度估计多置信区间多变量回归区间预测

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

区间预测,相较于传统的点预测,更能反映预测结果的不确定性,在许多领域,例如金融风险管理、气象预报和交通流量预测等,都具有重要的应用价值。本文将探讨一种基于门控循环单元网络(GRU)、注意力机制和核密度估计(KDE)的多置信区间多变量回归区间预测方法,并详细阐述其在Matlab平台下的实现过程。该方法能够有效地捕捉时间序列数据中的非线性关系和长期依赖性,并提供不同置信水平下的预测区间,从而更全面地评估预测结果的可靠性。

一、 模型框架

本模型的核心思想是结合GRU网络的序列建模能力、注意力机制的特征提取能力以及KDE的概率密度估计能力,实现对多变量时间序列的区间预测。具体框架如下:

  1. 数据预处理: 首先,对原始的多变量时间序列数据进行预处理,包括数据清洗、缺失值处理、标准化等。预处理步骤的质量直接影响最终预测结果的精度。针对不同变量的量纲差异,需要选择合适的标准化方法,例如Z-score标准化或MinMax标准化。

  2. GRU网络建模: 利用GRU网络对预处理后的时间序列数据进行建模。GRU网络能够有效地捕捉时间序列数据中的长期依赖关系,并提取关键特征。模型的输入为历史时间步的多变量数据,输出为预测时刻的多个变量的预测值。层数和单元数的选择需要根据具体数据集进行调整,可以通过交叉验证等方法确定最佳参数。

  3. 注意力机制: 在GRU网络输出层后加入注意力机制,进一步提升模型的预测精度。注意力机制能够根据输入序列的不同时间步的重要性赋予不同的权重,从而突出对预测结果影响较大的特征信息。常用的注意力机制包括Bahdanau注意力和Luong注意力,其选择取决于具体的应用场景和数据特性。

  4. 多变量回归: GRU网络和注意力机制的输出为预测时刻多个变量的点预测值。为了更全面地考虑变量间的相互影响,可以采用多变量回归模型对这些点预测值进行进一步的调整和优化。例如,可以使用多元线性回归、支持向量回归等模型。

  5. KDE核密度估计: 基于GRU-Attention网络输出的点预测值以及历史数据的残差信息,利用KDE方法对预测结果进行区间估计。KDE可以根据历史数据的分布特征,估计预测值在不同置信水平下的概率密度函数,从而得到相应的预测区间。可以选择不同的核函数,例如高斯核函数,并调整带宽参数来控制预测区间的宽度。该方法可以同时生成多个置信水平(例如 90%, 95%, 99%) 的预测区间,提供更精细的预测不确定性信息。

二、 Matlab实现细节

本模型的Matlab实现需要用到深度学习工具箱和统计工具箱。具体步骤如下:

  1. 数据导入和预处理: 使用Matlab自带函数导入数据,并使用zscore函数进行标准化。缺失值可以使用插值法进行填充,例如线性插值或样条插值。

  2. GRU网络构建: 使用layerGraph函数构建GRU网络结构,设置网络层数、单元数、激活函数等参数。可以使用trainNetwork函数训练GRU网络,并使用交叉验证等方法选择最佳参数。

  3. 注意力机制的实现: 可以根据选择的注意力机制类型,编写相应的Matlab函数,计算注意力权重并更新GRU网络的输出。

  4. 多变量回归: 使用Matlab的统计工具箱中的函数,例如fitrlinear函数进行多元线性回归建模。

  5. KDE核密度估计: 使用ksdensity函数进行核密度估计,计算不同置信水平下的预测区间。需要根据历史数据残差的分布情况选择合适的带宽参数。

  6. 结果可视化: 利用Matlab的绘图函数,将预测结果和预测区间进行可视化,例如绘制预测值和预测区间随时间的变化曲线,并标注不同置信水平的区间。

三、 模型评估

对区间预测模型的评估需要考虑预测区间的覆盖率和宽度。常用的评价指标包括:

  • 覆盖率 (Coverage): 实际值落在预测区间内的比例。覆盖率越高,表明预测区间越可靠。

  • 区间宽度 (Interval Width): 预测区间的平均宽度。区间宽度越窄,表明预测精度越高。

  • 平均预测误差 (Mean Prediction Error): 点预测值的平均误差。

需要在测试集上进行评估,并综合考虑以上指标来评价模型的性能。

四、 结论

本文提出了一种基于GRU-Attention-KDE的区间预测方法,并详细阐述了其在Matlab平台下的实现过程。该方法能够有效地进行多变量时间序列的区间预测,并提供不同置信水平下的预测区间,提升了预测结果的可靠性和实用性。未来研究可以考虑改进注意力机制、探索更先进的深度学习模型以及结合其他不确定性量化方法,进一步提高区间预测的精度和效率。 此外,对不同核函数和带宽参数的敏感性分析也是未来研究的重要方向。 最终目标是构建一个更加鲁棒且精准的多变量时间序列区间预测模型,以满足不同领域的实际应用需求。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 徐冬梅,王亚琴,王文川.基于VMD-GRU与非参数核密度估计的月径流区间预测方法及应用[J].水电能源科学, 2022(006):040.
[2] 电气工程.基于ISSA-QRGRU的风电功率概率密度预测[D]. 2023.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值