时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

摘要: 信号分解是信号处理领域的核心问题,其目标在于将复杂信号分解为若干具有物理意义的独立分量,以便更好地理解信号的本质特征。近年来,辛几何模态分解 (Symplectic Geometry Mode Decomposition, SGMD) 作为一种新型的非线性信号分解方法,凭借其在处理非平稳非线性信号方面的优越性能,受到了广泛关注。然而,有效地可视化SGMD分解得到的众多分量,并直观地展现其时间-频率特征以及相互之间的关系,仍然是一个挑战。本文将深入探讨基于SGMD的信号分解分量可视化方法,涵盖多种可视化技术的选择、优缺点比较以及在不同类型信号中的应用案例,并对未来研究方向进行展望。

关键词: 辛几何模态分解 (SGMD),信号分解,可视化,时间-频率分析,非线性信号

1. 引言

信号分解旨在将复杂的信号分解成若干相对简单的、具有物理意义的子分量。传统的信号分解方法,如傅里叶变换、小波变换等,在处理平稳信号方面表现出色,但对于非平稳非线性信号,其分解效果往往不尽如人意。SGMD作为一种新兴的非线性信号处理方法,基于辛几何理论,能够有效地分解非平稳非线性信号,并提取其内在的模态分量。它克服了经验模态分解 (Empirical Mode Decomposition, EMD) 方法中模态混叠等问题,并具有更好的适应性和稳定性。然而,SGMD分解通常会产生大量的模态分量,如何有效地对其进行可视化,清晰地展现各个分量的特性及其相互关系,成为理解SGMD分解结果的关键。

2. SGMD分解原理简述

SGMD算法的核心思想是将信号分解为一系列具有不同频率和振幅的本征函数,这些本征函数构成系统的模态分量。该算法通过构建信号的辛几何框架,利用辛算子迭代求解信号的本征值和本征函数,从而实现信号的分解。与EMD相比,SGMD具有以下优点:1)避免了EMD中模态混叠的问题;2)具有更好的抗噪性能;3)能够处理更复杂的非线性信号。

3. SGMD分解分量可视化方法

有效的可视化方法对于理解SGMD分解结果至关重要。常用的可视化技术包括:

(1) 时域波形图: 这是最直观的方法,能够直接显示每个模态分量的时域特性。通过比较不同模态分量的波形,可以初步了解其频率和振幅特性。然而,对于复杂的信号,仅依靠时域波形图难以全面展现其特性。

(2) 频谱图: 通过对每个模态分量进行傅里叶变换或短时傅里叶变换 (Short Time Fourier Transform, STFT),可以得到其频谱图,直观地展现每个分量的频率成分。 对于非平稳信号,STFT比傅里叶变换更有效。

(3) 时频图: 对于非平稳信号,时频图能够同时展现信号的时间和频率信息。常用的时频分析方法包括STFT、小波变换、Wigner-Ville分布等。将这些方法应用于SGMD分解得到的每个模态分量,可以更全面地展现其时间-频率特性。 选择合适的时频表示方法需要考虑信号的特性和计算复杂度。

(4) 三维可视化: 对于多维信号或需要展现多个模态分量之间关系的情况,三维可视化技术是有效的选择。例如,可以利用三维曲面图或体绘制技术,将时间、频率和振幅信息结合起来,更直观地展现信号的特性。

(5) 关联性分析与可视化: 可以通过计算不同模态分量之间的相关系数或互信息等指标,量化它们之间的关系,并利用热力图或网络图等方式进行可视化,揭示模态分量之间的相互作用。

4. 不同类型信号中的应用案例

SGMD及其可视化技术已经在多种领域得到了应用,例如:机械故障诊断、地震信号分析、生物医学信号处理等。 例如,在机械故障诊断中,SGMD可以将复杂的振动信号分解为若干模态分量,每个分量对应于不同的故障类型或部件。通过对这些模态分量的时频图进行分析,可以有效地识别故障类型和定位故障位置。

5. 讨论与展望

本文综述了基于SGMD的信号分解分量可视化方法。 虽然已经有一些有效的可视化技术,但仍然存在一些挑战:

  • 高维数据可视化: 对于高维信号或大量模态分量,如何有效地进行可视化仍然是一个难题。需要开发新的可视化技术来处理这类数据。

  • 可视化结果的定量分析: 目前的许多可视化方法主要依赖于人工分析,缺乏定量化的指标来评估可视化结果的有效性。 未来的研究需要发展更有效的定量分析方法。

  • 自适应可视化: 根据不同的信号特性和分析目标,选择合适的可视化方法至关重要。 开发自适应的可视化技术,能够根据信号的特点自动选择最合适的可视化方法,将是未来的研究方向。

6. 结论

SGMD作为一种有效的非线性信号分解方法,为复杂信号的分析提供了新的工具。 有效的可视化技术是理解SGMD分解结果的关键。 本文对基于SGMD的信号分解分量可视化方法进行了综述,并对未来研究方向进行了展望,期望为相关研究提供参考。 未来研究需要关注高维数据可视化、可视化结果的定量分析以及自适应可视化技术的发展。

⛳️ 运行结果

🔗 参考文献

[1]李云峰,高云鹏,蔡星月,等.自适应辛几何模态分解和短时能量差分因子在电能质量扰动检测中的应用[J].电工技术学报, 2022(017):037.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值