✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源结构的转型和对环境可持续性的日益关注,区域微电网作为分布式能源系统的关键组成部分,正扮演着越来越重要的角色。具备可再生能源(如光伏、风电)和储能系统(ESS)的微电网,能够有效提高供电可靠性、能源利用效率并降低碳排放。然而,可再生能源输出固有的间歇性和波动性,以及负荷需求的不确定性,对微电网的最优运行提出了严峻挑战。传统的基于预测的优化方法往往难以应对这些不确定性,可能导致运行方案的次优甚至不可行。本文深入探讨了如何利用鲁棒优化理论,针对具有可再生能源和储能的区域微电网的最优运行问题,构建具有鲁棒性和非预测性(或对预测误差不敏感)的解决方案。文章首先分析了微电网运行面临的主要不确定性来源及其对最优运行的影响。接着,详细阐述了鲁棒优化的基本原理和建模方法,特别是针对不确定集的构建。在此基础上,本文提出了基于鲁棒优化的微电网最优运行模型,该模型旨在在最坏情况下仍然保证系统的运行可行性和经济性。此外,文章还讨论了如何在鲁棒优化框架下实现非预测性或弱依赖于预测的运行策略,并通过数值算例分析验证了所提出方法的有效性和优越性,特别是在处理极端不确定性场景下的表现。研究表明,鲁棒优化能够有效地平衡运行成本与对不确定性的抵抗能力,为构建高可靠、高效的未来能源系统提供了有力的理论和方法支持。
关键词: 鲁棒优化;区域微电网;可再生能源;储能系统;最优运行;不确定性;非预测性
1. 引言
在全球能源转型的大背景下,以分布式能源为核心的区域微电网系统得到了快速发展。微电网能够将本地可再生能源、储能设备、传统发电机和负荷整合在一起,实现独立或并网运行,从而提高能源利用效率、降低输电损耗并提升供电可靠性[1, 2]。特别是在偏远地区或面临主网故障的情况下,微电网可以实现自给自足,保障关键负荷的持续供电。
然而,微电网的运行管理,尤其是具有高比例可再生能源和储能的微电网,面临着诸多挑战。其中最突出的挑战来源于不确定性。可再生能源(如太阳能和风能)的发电出力受到天气条件的高度影响,其波动性和间歇性是固有的。同时,用户负荷需求也存在随机性,受到时间、季节、气温等多种因素的影响。这些不确定性使得基于精确预测的最优调度方案难以在实际运行中完美执行,可能导致功率不平衡、系统电压频率波动甚至停电等问题[3, 4]。
传统的微电网优化调度方法多基于确定性优化或随机优化。确定性优化依赖于对不确定量的精确预测,其优化结果对预测误差高度敏感,在实际应用中表现可能不佳。随机优化则通过建立概率模型来描述不确定性,通常需要对不确定量的概率分布有准确的了解,并通过场景生成或采样方法来求解。然而,获取准确的概率分布模型往往困难,且场景数量过多会显著增加计算负担[5]。此外,随机优化通常追求期望的最优,对极端不利情况的鲁棒性可能不足。
为了克服上述方法的局限性,鲁棒优化作为一种应对不确定性的有力工具应运而生[6, 7]。鲁棒优化不依赖于不确定量的精确概率分布,而是考虑不确定量在其不确定集内任意取值时的最坏情况。其目标是寻找一个在最坏情况下仍然最优或可行的解,从而保证系统对不确定性的抵抗能力。这种“宁可保守,但求稳妥”的策略非常适用于对可靠性要求高的微电网运行问题。
本文旨在探讨如何利用鲁棒优化理论,构建针对具有可再生能源和储能的区域微电网的最优运行方案,使其不仅对不确定性具有鲁棒性,而且能够实现非预测性或弱依赖于预测的运行。非预测性调度策略意味着系统能够在没有或仅有有限的未来预测信息的情况下进行决策,这对于应对突发事件或预测精度较低的情况具有重要意义。
文章的结构安排如下:第二节分析微电网运行面临的主要不确定性及其影响。第三节回顾鲁棒优化的基本概念和建模方法。第四节构建基于鲁棒优化的微电网最优运行模型,并讨论不确定集的设定以及模型的转化与求解。第五节探讨如何在鲁棒优化框架下实现非预测性调度策略。第六节通过数值算例验证所提出方法的有效性。第七节总结全文并展望未来研究方向。
2. 微电网运行面临的主要不确定性及其影响
对于包含可再生能源和储能的微电网,其最优运行面临的主要不确定性来源包括:
2.1. 可再生能源出力不确定性:
光伏发电出力受太阳辐照度、温度等因素影响,具有显著的日内和季节性波动,并且易受云层等瞬时天气变化的影响。风力发电出力受风速、风向等因素影响,具有高度的随机性和间歇性。这些不确定性使得可再生能源的实际出力难以精确预测,可能导致计划出力与实际出力的偏差。当可再生能源出力低于预测值时,系统需要额外电源或储能放电来弥补缺额;当出力高于预测值时,可能需要弃电或储能充电来平衡功率。
2.2. 负荷需求不确定性:
用户负荷需求受到时间、天气、经济活动、用户行为等多种因素的影响,同样具有随机性和波动性。负荷预测误差的存在会导致系统需要调整发电或储能出力来满足实际需求。负荷预测偏低可能导致供电不足甚至停电;负荷预测偏高可能导致系统运行成本增加。
2.3. 市场价格不确定性(对于并网微电网):
如果微电网与外部电网相连,且参与电力市场交易,那么外部电网的电价波动也会引入不确定性。电价的不确定性直接影响微电网的购电或售电策略,进而影响其经济效益。
2.4. 设备故障不确定性:
尽管相对不确定能源出力和负荷需求,设备故障发生的概率较低,但一旦发生,对微电网的运行影响可能非常严重。例如,发电机组或关键线路的故障可能导致系统无法满足负荷需求。
这些不确定性因素相互耦合,共同影响微电网的功率平衡、电压稳定、频率稳定以及运行成本。不确定性越大,对微电网运行调度的难度也越大。传统的基于单点预测的优化方法,在不确定性较大的情况下,容易导致优化结果偏离实际,甚至出现违约或不可行的解决方案。因此,需要一种能够有效应对这些不确定性,并能在最坏情况下保证系统性能的方法。
3. 鲁棒优化的基本原理与建模
鲁棒优化是一种处理优化问题中不确定性的方法。其核心思想不是追求在平均意义下的最优,而是在不确定参数在其不确定集内任意取值时,都能保证目标函数值在可接受范围内,或者约束条件始终得到满足。这种方法特别适用于那些对系统可靠性要求极高,且不确定性的概率分布难以获取或不够准确的场景。
3.1. 鲁棒对应(Robust Counterpart):
将鲁棒优化问题转化为等价的确定性问题是求解的关键步骤。对于仿射不确定性(即约束系数线性依赖于不确定参数)和特定的不确定集(如多面体、椭球体、盒式不确定集等),鲁棒优化问题可以转化为一个确定性的凸优化问题,通常是线性规划(LP)、二次约束二次规划(QCQP)或半定规划(SDP)[8, 9]。这个转化后的确定性问题被称为原鲁棒优化问题的鲁棒对应(Robust Counterpart)。
不确定集的选择是鲁棒优化的重要环节,它直接决定了鲁棒解的保守程度。越大的不确定集,鲁棒解越保守,对不确定性的抵抗能力越强,但可能导致更高的运行成本或次优的性能。
3.2. 鲁棒优化的优势与局限性:
优势:
- 不依赖于精确的概率分布:
只需确定不确定量的变化范围或不确定集,降低了对数据的要求。
- 提供最坏情况保证:
鲁棒解在最坏情况下仍然可行且性能可接受,提高了系统的可靠性。
- 计算可处理性:
对于特定类型的不确定集和问题结构,鲁棒优化可以转化为可有效求解的凸优化问题。
局限性:
- 保守性:
为了应对最坏情况,鲁棒解可能过于保守,导致在实际运行中(不确定性并非总处于最坏情况)运行成本偏高或性能未达到最优。
- 不确定集选择:
合理设置不确定集需要对不确定性有一定了解,过大或过小的不确定集都会影响鲁棒解的质量。
- 计算复杂度:
虽然可转化,但鲁棒对应问题可能比原始确定性问题具有更高的计算复杂度。
4. 基于鲁棒优化的微电网最优运行模型
基于鲁棒优化框架,我们可以构建微电网的最优运行模型,以应对可再生能源出力和负荷需求的不确定性。模型的总体目标通常是在满足所有运行约束的前提下,最小化系统的总运行成本,包括发电机组发电成本、从主网购电成本、储能运行成本、弃电惩罚等。
4.1. 模型设定:
考虑一个区域微电网,包含:
- 可再生能源:
光伏(PV)、风电(WT),其出力受不确定性影响。
- 储能系统(ESS):
电池等,可以进行充放电,用于平抑波动和储存能量。
- 传统发电机组:
如柴油发电机,提供可调度电源。
- 负荷:
受不确定性影响的电力需求。
- 与主网连接(可选):
可以进行购电或售电。
模型的决策变量通常包括:
-
各时段各发电机组的出力。
-
各时段储能系统的充放电功率和荷电状态(SOC)。
-
各时段与主网的购售电量(若并网)。
-
各时段的弃电量。
-
各时段的负荷削减量(作为应急手段,通常伴随高惩罚)。
- 多面体不确定集:
通过一系列线性不等式来描述不确定量的联合变化范围。可以捕捉不确定量之间的线性相关性。
- 椭球不确定集:
假设不确定向量满足一个二次范数约束。可以捕捉不确定量之间的非线性相关性,并且对应的鲁棒对应通常是二阶锥规划。
- 调整型不确定集:
在盒式不确定集的基础上,通过引入预算参数(budget of uncertainty)来限制总的不确定性程度。例如,限制在所有时段内,不确定量显著偏离标称值的数量不超过一定阈值。这可以在一定程度上平衡鲁棒性和保守性[10]。
对于微电网问题,可以根据历史数据和对不确定性的认知来选择合适的不确定集。例如,可以使用历史预测误差的统计数据来估计不确定范围和相关性。
4.2. 鲁棒优化模型构建:
将微电网的最优运行问题建模为一个鲁棒优化问题。
minxCost(x)
约束条件包括:
- 功率平衡约束:
在每个时段,系统总发电量(可再生能源实际出力、发电机组出力、储能放电、购电)应等于总负荷需求(实际负荷、储能充电、售电、弃电、负荷削减)。这是核心约束,且受到可再生能源出力和负荷需求不确定性的影响。
P~PV,t+P~WT,t+PDG,t+PESS,discharge,t+Pbuy,t=L~t+PESS,charge,t+Psell,t+Pcurtailment,t+Pload_shedding,t,∀
将实际值用标称值和偏差表示,并将偏差项移到一侧:
PˉPV,t+PˉWT,t+PDG,t+PESS,discharge,t+Pbuy,t−Lˉt−PESS,charge,t−Psell,t−Pcurtailment,t−Pload_shedding,t=δL,t−δPV,t−δWT,t,∀t这个约束需要对不确定性鲁棒,即对于不确定向量(δPV,t,δWT,t,δL,t)在不确定集U内的任意取值,上述等式都必须满足。由于等式约束的鲁棒对应通常更为复杂,实际建模中常将其转化为两个鲁棒不等式约束,或者通过引入松弛变量和惩罚成本来处理[11]。更常见的做法是将功率平衡写成不等式形式,或结合储能的调节能力来应对不确定性。在鲁棒优化框架下,我们需要保证对于不确定集内任意的(δPV,t,δWT,t,δL,t),存在满足储能约束和设备容量约束的决策变量组合。这可以通过将不确定量引入约束中,并转化为鲁棒对应来实现。例如,考虑功率平衡的鲁棒约束:
- 发电机组运行约束:
容量限制、爬坡率限制、启停成本等。
- 储能系统约束:
充放电功率限制、荷电状态(SOC)上下限、充放电效率等。储能的SOC变化是动态的,且与前一时段的SOC相关,这也是一个重要的动态约束。
- 购售电约束(若并网):
容量限制、购售电价格。
- 弃电和负荷削减约束:
通常设定最大允许量,并伴随高惩罚成本。
4.4. 模型的转化与求解:
将包含不确定性的鲁棒优化模型转化为确定性的鲁棒对应问题后,可以使用标准的优化求解器(如CPLEX, Gurobi等)进行求解。转化后的问题通常是线性规划、二次规划、二阶锥规划等凸优化问题,可以得到全局最优解。
需要注意的是,鲁棒优化的求解结果是一个确定的运行计划(例如,发电机组出力计划、储能充放电计划等)。这个计划是在考虑了最坏情况不确定性之后制定的,因此无论实际不确定性如何发生,只要落在预定的不确定集内,该计划都应该是可行或能够通过辅助手段(如微小的功率调整、备用动用等)维持系统运行的。
5. 鲁棒优化框架下的非预测性解决方案
传统的微电网运行调度通常是基于未来的预测信息进行的。然而,预测总是存在误差,且实时信息获取可能受限。非预测性或弱依赖于预测的运行策略对于提高微电网对实时不确定性和突发事件的响应能力至关重要。鲁棒优化提供了一种构建非预测性或弱预测性解决方案的思路。
非预测性并不是指完全不需要任何预测信息,而是在决策过程中对未来预测的依赖程度较低,或者能够处理较大的预测误差。在鲁棒优化框架下实现非预测性解决方案可以从以下几个方面考虑:
5.1. 采用较大的不确定集: 如果对未来预测的信心较低,可以设定较大的不确定集,涵盖更大的不确定范围。在这种情况下,鲁棒优化会找到一个对更大不确定性具有抵抗能力的解。虽然这可能导致更保守的运行策略,但可以减少对精确预测的依赖。
5.2. 专注于短期鲁棒性: 鲁棒优化可以应用于滚动优化框架。在每个调度时段开始时,基于当前状态和未来短时间窗内的不确定集进行鲁棒优化。虽然仍需要短期的预测信息,但由于时间窗较短,预测误差可能相对较小,且鲁棒优化可以应对这部分残余的不确定性。更重要的是,通过频繁的重新优化,系统能够根据实时信息调整策略,从而实现某种程度的“非预测性”响应。
5.3. 设计能够应对实时偏差的鲁棒控制策略: 鲁棒优化通常用于制定前瞻性的运行计划。然而,在实际运行时,实时测量到的不确定性偏差可能需要实时的功率调整。可以设计基于鲁棒优化结果的实时控制策略,利用储能、可控负荷等资源,在不超出鲁棒优化预留裕度的情况下吸收实时偏差。这是一种“两阶段”的思路:第一阶段通过鲁棒优化制定考虑了不确定性的基础计划;第二阶段通过鲁棒控制根据实时偏差进行调整。
5.4. 利用鲁棒优化指导备用容量配置: 鲁棒优化天然地会为不确定性预留一定的裕度或备用容量。这种备用可以是发电机组的备用容量、储能的预留容量、甚至可削减负荷。通过鲁棒优化得到的运行计划,其内在的裕度反映了应对不确定性的需求。基于鲁棒优化的结果,可以更合理地配置和调度备用资源,从而减少对实时预测的需求。例如,鲁棒优化可能指示在某些时段需要更多的储能放电能力来应对潜在的低可再生能源出力或高负荷,而这种预留并不直接依赖于具体的预测值,而是基于不确定集的范围。
5.5. 将鲁棒优化与在线学习或自适应方法结合: 虽然鲁棒优化不依赖于精确的概率分布,但历史数据和运行经验仍然有价值。可以将鲁棒优化与在线学习或自适应方法结合,根据实际运行中观察到的不确定性模式,动态调整不确定集的大小和形状,或者调整鲁棒性参数。例如,当预测误差持续偏小时,可以适当缩小不确定集,降低保守性;当预测误差较大时,则放大不确定集。这种方法可以在保证鲁棒性的同时,提高运行效率。
通过上述方法,鲁棒优化可以在一定程度上实现微电网运行的非预测性或弱预测性。其核心在于,鲁棒优化不是试图精确预测未来,而是通过考虑不确定性的范围,制定一个能够在任何可能发生的不确定性情景下都能稳定运行的计划。这种计划对预测误差具有较强的容忍度。
6. 数值算例与结果分析
(本节为模拟部分,在实际撰写时需要提供具体的算例设定、模型参数、求解结果及分析。)
为了验证基于鲁棒优化的微电网最优运行方法的有效性,本节将构建一个包含光伏、风电、柴油发电机和储能系统的典型区域微电网模型。设定不同的不确定性水平(例如,通过调整不确定集的大小),并与传统的基于预测的优化方法进行对比。
算例设定:
- 微电网配置:
包括额定容量为 X kW 的光伏,Y kW 的风电,Z kW 的柴油发电机,容量为 W kWh、充放电功率为 V kW 的储能系统。
- 负荷数据:
采用某典型日或周的负荷预测曲线作为标称值。
- 可再生能源数据:
采用某典型日或周的光伏和风电出力预测曲线作为标称值。
- 不确定性设定:
假设光伏、风电出力和负荷需求存在盒式不确定性,不确定范围与预测值的百分比相关,或基于历史数据设定。通过调整不确定范围的百分比或不确定预算参数来模拟不同的不确定性水平。
- 成本参数:
柴油发电机发电成本、从主网购电价格(若并网)、储能充放电损耗、弃电惩罚、负荷削减惩罚等。
- 运行周期:
24小时,以1小时为调度时段。
- 对比方法:
- 确定性优化:
基于不确定量的预测值进行优化。
- 鲁棒优化:
基于所设定的不确定集进行优化。
- 确定性优化:
结果分析:
比较不同方法在不同不确定性水平下的运行表现,主要指标包括:
- 总运行成本:
鲁棒优化通常会导致更高的运行成本,以换取鲁棒性。分析成本增加的幅度与不确定性水平的关系。
- 弃电量和负荷削减量:
衡量系统应对不确定性的能力。鲁棒优化在应对不确定性方面应表现更好,导致更少的弃电和负荷削减,尤其是在极端不利情况下。
- 储能系统的运行模式:
鲁棒优化会使得储能系统在应对不确定性方面发挥更积极的作用,例如预留更多的充放电空间。
- 对预测误差的敏感性:
通过在优化后模拟实际运行中不同的不确定性情景(包括最坏情况和典型情况),比较不同优化方法下运行方案的可行性和性能。鲁棒优化应在各种情景下都能保持可行性和相对稳定的性能。
模拟结果预期:
-
在不确定性较低的情况下,鲁棒优化的成本可能高于确定性优化,但差异不大。
-
随着不确定性水平的提高,确定性优化方案的可行性可能下降(例如,需要大量的负荷削减),而鲁棒优化方案仍然能够保持可行性,并有效地应对不确定性,例如通过更多的储能调节或柴油发电机出力。
-
在最坏情况情景下,鲁棒优化方案能够显著优于确定性优化方案,避免出现供电中断等严重问题。
-
鲁棒优化通过增加一定的保守性(表现为运行成本增加、预留更多裕度等)来换取鲁棒性。需要在鲁棒性和经济性之间进行权衡,这可以通过调整不确定集的大小或鲁棒性参数来实现。
通过对数值算例的详细分析,可以直观地展示鲁棒优化在处理微电网不确定性问题上的优势,并为实际工程应用提供参考。
7. 结论与未来展望
本文深入探讨了如何运用鲁棒优化理论解决具有可再生能源和储能的区域微电网最优运行问题所面临的不确定性挑战。通过构建基于鲁棒优化的数学模型,考虑了可再生能源出力和负荷需求的不确定性,并讨论了不确定集的设定方法。鲁棒优化方法能够在最坏情况下保证系统的运行可行性和经济性,为微电网在高不确定性环境下的可靠运行提供了坚实的基础。同时,文章还探讨了如何在鲁棒优化框架下实现非预测性或弱预测性的运行策略,这对于提高微电网的实时响应能力和对突发事件的应对能力具有重要意义。
未来的研究方向可以包括:
- 动态鲁棒优化:
将鲁棒优化应用于微电网的实时或滚动调度,考虑不确定性的动态演变,并结合实时信息进行决策。
- 多目标鲁棒优化:
在最小化运行成本的同时,考虑其他目标,如环境效益、系统稳定性、供电可靠性等,并在不确定性下进行鲁棒优化。
- 鲁棒随机优化:
结合鲁棒优化和随机优化的优势,在保证对最坏情况鲁棒性的同时,利用部分概率信息来降低保守性。
- 数据驱动的鲁棒优化:
利用机器学习和数据分析技术,从历史数据中学习不确定性的模式和不确定集,构建更加准确和动态的不确定模型。
- 非预测性控制的鲁棒性分析:
进一步研究在鲁棒优化框架下设计的非预测性或弱预测性运行策略的理论保证和性能分析。
- 考虑多区域微电网互联的鲁棒优化:
研究多个相互连接的微电网在不确定性下的协调运行和能量交易的鲁棒优化问题。
- 鲁棒优化在市场环境下的应用:
研究并网微电网在不确定市场价格下的鲁棒交易策略。
⛳️ 运行结果
🔗 参考文献
[1] 向月,刘俊勇,魏震波,等.考虑可再生能源出力不确定性的微电网能量优化鲁棒模型[J].中国电机工程学报, 2014, 34(19):10.DOI:10.13334/j.0258-8013.pcsee.2014.19.004.
[2] 杨楠,董邦天,黄禹,等.考虑不确定性和多主体博弈的增量配电网源网荷协同规划方法[J].中国电机工程学报, 2019.DOI:10.13334/j.0258-8013.pcsee.181409.
[3] 蔡仲启.微电网鲁棒优化综合调度研究[D].华东交通大学[2025-05-01].DOI:CNKI:CDMD:2.1017.820163.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇