6D位姿估计 论文及代码汇总,持续更新~~~

本文提供了一份6D位姿估计的最新综述,涵盖从2014年至2024年的相关研究,重点讨论了深度学习在解决实例级、类别级和未见物体姿态估计中的应用。文章介绍了当前的挑战、最先进的方法和未来发展方向,包括各种输入数据模式、输出自由度、物体属性和下游任务。同时,还列举了近年来的顶级会议论文和代码资源,为研究者和实践者提供了一个全面的参考指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载请注明作者和出处:http://blog.csdn.net/john_bh/

6D位姿估计 论文及代码汇总,持续更新中~~

1. Data

2. Metric

3. 比赛

4. Paper List

4.1 Survey

  1. Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive Overview — arxiv paper 2021.05
  2. Deep Learning-Based Object Pose Estimation: A Comprehensive Survey — arxiv paper 2024.05 github
    物体姿态估计是一个基本的计算机视觉问题,在增强现实和机器人领域有着广泛的应用。在过去十年中,深度学习模型因其卓越的准确性和鲁棒性,逐渐取代了依赖于工程点对特征的传统算法。然而,当代方法仍面临着一些挑战,包括对标记训练数据的依赖性、模型的紧凑性、挑战条件下的鲁棒性,以及对未见过的新物体进行泛化的能力。目前还缺少一份最新的调查报告,讨论该领域在不同方面取得的进展、面临的挑战以及未来的发展方向。为了填补这一空白,该工作讨论了基于深度学习的物体姿态估计的最新进展,涵盖了问题的所有三种形式,即实例级、类别级和未见物体姿态估计。该工作的调查还涵盖了多种输入数据模式、输出姿势的自由度、物体属性和下游任务,为读者提供了对这一领域的整体理解。此外,调查还讨论了不同领域的训练范式、推理模式、应用领域、评估指标和基准数据集,并报告了当前最先进方法在这些基准数据集上的性能,从而帮助读者选择最适合其应用的方法。最后,调查报告指出了主要的挑战,回顾了目前普遍存在的问题,并提出了一些建议。

4.2 Papers

2024

  1. SAM-6D: Segment Anything Model Meets Zero-Shot 6D Object Pose Estimation — CVPR_2024code
    Zero-Shot 6D物体姿态估计涉及到在混乱场景中检测具有6D姿态的新物体,这对模型的泛化性提出了重大挑战。最近的Segment Anything Model(SAM)展示了出色的zero-shot transfer 性能,为解决这一任务提供了一个有希望的解决方案。基于此,提出了一种新的SAM-6D框架,通过实例分割和姿态估计两步来实现该任务。给定目标对象,SAM-6D使用两个专用子网络,即实例分割模型(ISM)和姿态估计模型(PEM),在杂乱的RGB-D图像上执行这些步骤。ISM以SAM为高级起点,生成所有可能的 object proposals,并通过精心制作 object 在 semantics、appearance和geometry方面的匹配分数,选择性地保留有效的 object proposals。PEM将姿态估计视为 partial-to-partial 的点匹配问题,执行两阶段的点匹配过程,采用新颖的 background tokens 设计来构建密集的3D-3D对应,最终产生姿态估计。SAM-6D 在7个BOP基准的核心数据集上,在新目标的实例分割和姿态估计方面都优于现有方法。
    在这里插入图片描述

  2. FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects — CVPR 2024projectcode
    提出了FoundationPose,一个用于6D物体姿态估计和跟踪的统一基础模型,支持基于模型和无模型的设置。我们的方法可以在测试时立即应用于一个新的对象,而不需要微调,只要它的CAD模型是给定的,或者少量的参考图像被捕获。我们通过神经隐式表示来弥合这两种设置之间的差距,该表示允许有效的新视图合成,并在相同的统一框架下保持下游姿态估计模块不变。通过大规模的综合训练,在大型语言模型(LLM)、基于变压器的新架构和对比学习公式的辅助下,实现了强的泛化性。对涉及挑战性场景和对象的多个公共数据集的广泛评估表明,我们的统一方法在很大程度上优于现有的针对每个任务的专门方法。此外,尽管减少了假设,它甚至可以获得与实例级方法相当的结果。

  3. FAR:Flexible, Accurate and Robust 6DoF Relative Camera Pose Estimation — CVPR_2024code

  4. MRC-Net:6-DoF Pose Estimation with MultiScale Residual Correlation — CVPR_2024

Arxiv

  1. PAM:Point-wise Attention Module for 6D Object Pose Estimation — arxiv paper
  2. PERCH 2.0 : Fast and Accurate GPU-based Perception via Search for Object Pose Estimation — arxiv paper
  3. EfficientPose: An efficient, accurate and scalable end-to-end 6D multi object pose estimation approacharxiv paper 2020.11code
  4. Vote from the Center: 6 DoF Pose Estimation in RGB-D Images by Radial Keypoint Voting — arxiv paper 2021.04
  5. Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image — arxiv paper 2020.09code
  6. A Dynamic Keypoints Selection Network for 6DoF Pose Estimation — arxiv paper 2021.10
  7. T6D-Direct: Transformers for Multi-Object 6D Pose Direct Regressionarxiv paper 2021.09
  8. ACR-Pose: Adversarial Canonical Representation Reconstruction Network for Category Level 6D Object Pose Estimation — arxiv paper 2021.11
  9. Introducing Pose Consistency and Warp-Alignment for Self-Supervised 6D Object Pose Estimation in Color Images — arxiv paper 2020.03code
  10. PyraPose: Feature Pyramids for Fast and Accurate Object Pose Estimation under Domain Shift — arxiv paper 2020.10code
  11. 6D Object Pose Estimation using Keypoints and Part Affinity Fields — arxiv paper 2021.07
  12. Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation — arxiv paper 2021.07
  13. 6D-ViT: Category-Level 6D Object Pose Estimation via Transformer-based Instance Representation Learning — arxiv paper 2021.10
  14. Spatial
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值