FITC-TAT-PEG-DSPE DSPE-PEG-TAT-FITC 穿膜TAT-荧光素-聚乙二醇-磷脂

产品信息

中文名称:磷脂-聚乙二醇-穿膜肽TAT-荧光素

简称  : DSPE-PEG-TAT-FITC 

品牌:魅罗科技(MeloPEG)

纯度:95%

存储条件:-20℃以下冰冻、干燥

保存时间:一年

应用

DSPE-PEG-TAT-FITC 是一种复合物,由磷脂 DSPE、聚乙二醇 PEG、TAT 肽和荧光标记剂 FITC(荧光异硫氰酸酯)组成。DSPE-PEG-TAT-FITC用于制备胶束,脂质体和脂质纳米颗粒等药物递送材料。

靶向穿膜肽TAT(Trans-Activator of Transcription),又称TAT肽,是一种小分子肽,通常由 11 个氨基酸组成,其序列为GRKKRRQRRRP。TAT肽最初被发现于人类免疫缺陷病毒(HIV)的蛋白质中,具有促进病毒转录和复制的作用,因此得名。

TAT肽的主要特点是其可以穿越生物膜,包括细胞膜和细胞核膜,而不依赖于传统的蛋白质通道或受体介导的细胞内摄取机制。这种能力使得TAT肽成为一种非常有用的载体,可用于将药物、DNA、RNA等大分子物质输送进入细胞内。

TAT-FITC 的作用和应用主要包括以下几个方面:

细胞内递送:TAT 肽具有穿膜能力,可以促进复合物的进入细胞内部。TAT-FITC 可以利用 TAT 肽的穿膜作用,将药物或其他功能分子有效地输送到细胞内部,提高治疗效果。

荧光标记和追踪:FITC 是一种荧光标记剂,在体外和体内可以发出绿色荧光。TAT-FITC 可以通过 FITC 标记,实现对复合物在体内的分布和行为的实时监测和追踪。

靶向递送:TAT 肽的存在可以使得复合物更容易穿越细胞膜,从而增加药物对特定细胞的靶向递送能力,提高治疗效果。

细胞成像:FITC 的荧光特性使得 TAT-FITC 复合物可用于细胞成像研究,观察药物递送过程中的细胞内分布和行为。

相关目录: 

DSPE-PEG-TAT-FITC    磷脂-聚乙二醇-多肽TAT-荧光素

DSPE-PEG-RVG29-FITC  磷脂-聚乙二醇-多肽RVG29-荧光素

DSPE-PEG-N3          磷脂聚乙二醇叠氮

DSPE-PEG-MAL      磷脂聚乙二醇马来酰亚胺

DSPE-PEG-SH          磷脂聚乙二醇巯基

DSPE-PEG-OH          磷脂聚乙二醇羟基

DSPE-PEG-β-D-Glucose 磷脂-聚乙二醇-β-D-葡萄糖

DSPE-PEG-6-0-Glucose   磷脂-聚乙二醇-6-0-葡萄糖

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
OpenCV可以通过色彩空间转换函数和图像分割函数来实现光谱拆分应用示例-FITC检测。 首先,将彩色图像转换为HSV色彩空间,HSV色彩空间的H通道可以表示颜色的色相,S通道可以表示颜色的饱和度,V通道可以表示颜色的亮度。然后,根据需要对图像进行阈值分割,得到二值图像。最后,根据二值图像提取感兴趣区域并进行处理。 下面是一个简单的示例代码,用于检测FITC标记的细胞: ```python import cv2 # 读取彩色图像 image = cv2.imread('cell.jpg') # 将彩色图像转换为HSV色彩空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 设置阈值,提取FITC标记的细胞 low_green = (50, 50, 50) high_green = (70, 255, 255) mask = cv2.inRange(hsv, low_green, high_green) # 对二值图像进行形态学操作,去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 提取感兴趣区域 contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 绘制感兴趣区域 for contour in contours: cv2.drawContours(image, [contour], 0, (0, 255, 0), 2) # 显示结果 cv2.imshow('FITC Detection', image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上述代码中,`cv2.cvtColor`函数用于将彩色图像转换为HSV色彩空间,`cv2.inRange`函数用于根据阈值提取FITC标记的细胞,`cv2.morphologyEx`函数用于对二值图像进行形态学操作,去除噪点,`cv2.findContours`函数用于提取感兴趣区域,并使用`cv2.drawContours`函数绘制感兴趣区域。最后使用`cv2.imshow`函数显示结果。 注意,在使用`cv2.findContours`函数时,需要根据OpenCV的版本进行调整。在OpenCV 3.x版本中,`cv2.findContours`函数返回两个值,而在OpenCV 4.x版本中,`cv2.findContours`函数只返回一个值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值