利用单纯形法进行线性规划求解

  • 作业要求

例16.5:

  • 理论推导

本作业题的目的分别利用两阶段修正单纯形法与两阶段仿射尺度法对线性规划问题进行求解。

两阶段修正单纯形法是一种求解线性规划问题的方法,它主要用于处理约束系数矩阵不包含单位矩阵(没有明显的基本可行解)的情况,也就是无法直接得到初始基可行解的情况。它分为两个阶段:

第一阶段:引入人工变量,构造一个只含有人工变量的目标函数,并求其最小值。如果最小值为零,则说明原问题有基可行解,可以进入第二阶段;如果最小值不为零,则说明原问题无可行解,算法终止。

第二阶段:去掉人工变量,恢复原目标函数,用单纯形法求解原问题的最优解。

两阶段仿射尺度法的基本原理同两阶段修正单纯形法,只不过将单纯形法计算的模块替换为仿射尺度的计算模块。

修正单纯形法是一种改进的单纯形法,它可以避免对大部分非基变量的计算,从而提高求解线性规划问题的效率。修正单纯形法的基本思想是,给定一个初始的可行基矩阵和其逆矩阵,通过不断地修正旧的可行基矩阵的逆矩阵,获得新的可行基矩阵的逆矩阵,进而完成单纯形法所需要的其他运算。修正单纯形法的主要步骤如下:

S1.针对初始基本可行解构造修正的单纯形表

S2.计算当前检验数,如果对所有非基变量都有检验数大于等于零,则停止运算,当前基本可行解即是最优解;否则进入下一步

S3.从小于零的检验数中选择一个检验数作为进基变量

S4.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Metaphysicist.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值