LSTM + Transformer 结合,模型性能效果炸裂

深度学习领域的探索不断推动着模型性能的提升与创新。

【LSTM结合Transformer】不仅整合了长期依赖关系的捕捉优势,还利用了Transformer在并行计算上的高效能力,显著改善了时间序列数据处理的效率与准确性。

近年来,这一混合模型在多任务实时预测中表现尤为突出,比如登上Nature子刊的最新混合架构LSTM-Transformer,即使数据保留率为50%,模型性能依然最优!

本文总结了最近两年【LSTM结合Transformer】相关的15篇前沿研究成果,这些论文都整理好了,希望能给各位的学术研究提供一些启发!

需要的同学添加公众号【沃的顶会】 回复 LSTM15 即可全部领取

1

Advanced  hybrid LSTM-transformer architecture for real-time multi-task prediction in engineering systems

方法:

论文提出了一种新颖的LSTM-Transformer混合架构,专门用于多任务实时预测。该模型结合了LSTM和Transformer架构的核心优势,通过在线学习和知识蒸馏技术,动态适应可变的操作条件并持续吸收新的现场数据。

### 关于Apache Doris集群的安装和部署指南 #### 一、背景介绍 Apache Doris 是一种基于MPP架构的OLAP数据库,因其高效的数据查询能力和便捷的操作特性而受到广泛欢迎。为了帮助更多有兴趣了解或测试Doris的人士减少入门障碍,社区提供了三种不同的构建与安装方案供选择,并附带详细的文档和支持材料[^1]。 #### 二、准备工作 在开始之前,请确认已经准备好如下条件: - 支持Linux系统的服务器若干台; - 已经获取到官方发布的最新版Doris源码包或者是预编译好的二进制文件; - 对目标机器拥有管理员权限以便执行必要的配置更改操作。 #### 三、环境准备 对于那些可能需要频繁更换工作地点或是网络连接不稳定的情况下,建议采用NAT模式来设置虚拟机中的网卡,这样可以避免因为物理位置变化而导致IP地址冲突等问题的发生[^4]。 #### 四、具体步骤 以下是简化后的安装流程概述: ##### 1. 下载软件包 前往官方网站下载页面找到适合自己平台版本的压缩包并解压至指定目录下。 ##### 2. 修改配置文件 编辑`conf/fe.conf` 和 `be/conf/be.conf`, 设置合适的参数值比如端口号, 日志级别等. ##### 3. 初始化元数据存储服务FE(Frontend) 启动前端节点前先初始化内部使用的Meta Store. ```bash ./bin/start_fe.sh --daemon=false --init=true ``` ##### 4. 启动BE(Backend)节点 依次开启各个后端计算单元,在每台主机上运行命令: ```bash ./bin/start_be.sh --daemon=false ``` ##### 5. 添加新加入的BE实例到集群中 登录任意一台已有的FE节点通过SQL语句完成注册新增加的服务实例。 ```sql ALTER SYSTEM ADD BACKEND "ip_address"; ``` ##### 6. 测试验证 最后可以通过简单的SELECT查询来进行功能性的检验,确保所有组件正常协作运作。 以上就是一套较为完整的针对初学者友好的Doris集群快速搭建方法论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值