π之黎曼ζ函数

π \pi π之黎曼ζ函数

巴塞尔问题的欧拉证明

sinx无穷乘积形式,根为正弦函数的非零零点

s i n ( x ) = ( x + 2 π ) ( x + π ) ( x ) ( x − π ) ( x − 2 π ) ⋯ sin(x) = (x+2\pi)(x+\pi)(x)(x-\pi)(x-2\pi)\cdots sin(x)=(x+2π)(x+π)(x)(xπ)(x2π)

x ( x 2 − π 2 ) ( x 2 − 2 2 π 2 ) ( x 2 − 3 2 π 2 ) ⋯ x(x^2 - \pi^2)(x^2 - 2^2 \pi^2)(x^2 - 3^2 \pi^2) \cdots x(x2π2)(x222π2)(x232π2)

通过系数C来收敛函数,使得函数的输出更加平滑,从而提高函数的逼近性能。
lim ⁡ x → 0 sin ⁡ ( x ) x = lim ⁡ x → 0 C ( x 2 − π 2 ) ( x 2 − 2 2 π 2 ) ( x 2 − 3 2 π 2 ) ⋯ \lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} C(x^2 - \pi^2)(x^2 - 2^2\pi^2)(x^2 - 3^2\pi^2) \cdots x0limxsin(x)=x0limC(x2π2)(x222π2)(x232π2)

C = 1 ( − π 2 ) ( − 2 2 π 2 ) ( − 3 2 π 2 ) ⋯ C = \frac{1}{(-\pi^2)(-2^2\pi^2)(-3^2\pi^2)\cdots} C=(π2)(22π2)(32π2)1

无穷和形式

sin ⁡ ( x ) = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots sin(x)=x3!x3+5!x57!x7+

无穷积形式

sin ⁡ ( x ) = x ( 1 − x 2 π 2 ) ( 1 − x 2 2 2 π 2 ) ( 1 − x 2 3 2 π 2 ) ⋯ \sin(x) = x \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{2^2 \pi^2}\right) \left(1 - \frac{x^2}{3^2 \pi^2}\right) \cdots sin(x)=x(1π2x2)(122π2x2)(132π2x2)

此式可以求sin1,sin2的近似值。

x ( 1 − ( 1 π 2 + 1 2 2 π 2 + 1 3 2 π 2 + ⋯   ) x 2 + ⋯   ) = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ x\left(1 - \left(\frac{1}{\pi^2} + \frac{1}{2^2\pi^2} + \frac{1}{3^2\pi^2} + \cdots \right) x^2 + \cdots \right) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots x(1(π21+22π21+32π21+)x2+)=x3!x3+5!x57!x7+
两边同时除以 ( x ),得到:
1 − ( 1 π 2 + 1 2 2 π 2 + 1 3 2 π 2 + ⋯   ) x 2 + ⋯ = 1 − x 2 3 ! + x 4 5 ! − x 6 7 ! + ⋯ 1 - \left(\frac{1}{\pi^2} + \frac{1}{2^2\pi^2} + \frac{1}{3^2\pi^2} + \cdots \right) x^2 + \cdots = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots 1(π21+22π21+32π21+)x2+=13!x2+5!x47!x6+
那么它们的二次系数也必然是相等的。

1 π 2 + 1 2 2 π 2 + 1 3 2 π 2 + ⋯ = 1 3 ! \frac{1}{\pi^2} + \frac{1}{2^2\pi^2} + \frac{1}{3^2\pi^2} + \cdots = \frac{1}{3!} π21+22π21+32π21+=3!1
两边同时乘以 π 2 \pi^2 π2,得到:
1 + 1 2 2 + 1 3 2 + ⋯ = π 2 6 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6} 1+221+321+=6π2
【解析推导】
黎曼函数,通常指的是黎曼ζ函数,是一个在数学分析中非常重要的函数,尤其是在数论和复分析领域。我们可以了解到黎曼ζ函数有两种主要的表达形式:

  1. 级数定义
    黎曼ζ函数可以通过一个无穷级数来定义,即对于任意复数 s s s,其实数部分大于1时,有:
    ζ ( s ) = ∑ n = 1 ∞ 1 n s \zeta (s) = \sum_{n=1}^{\infty} \frac{1}{n^s} ζ(s)=n=1ns1
    这个级数在 R e ( s ) > 1 Re(s) > 1 Re(s)>1的区域上收敛,并且在此区域内定义了一个全纯函数。

  2. 积分定义
    另一种定义方式是通过一个特定的积分表达式,即:
    ζ ( s ) = 1 Γ ( s ) ∫ 0 ∞ x s − 1 e x − 1 d x \zeta (s) = \frac{1}{\Gamma (s)} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx ζ(s)=Γ(s)10ex1xs1dx
    这里 Γ ( s ) \Gamma(s) Γ(s)是伽马函数,它是阶乘概念在复数域上的推广。

拓展到复平面
波恩哈德·黎曼进一步研究了这一函数,并发现通过解析延拓的方法,可以将 ζ ( s ) \zeta(s) ζ(s)的定义扩展到整个复平面(除了 s = 1 s=1 s=1这一点),使其成为一个全纯函数。这意味着在复平面上除了 s = 1 s=1 s=1外的任何点, ζ ( s ) \zeta(s) ζ(s)都是解析的,即在该点的邻域内可以展开为泰勒级数。

黎曼猜想
黎曼猜想涉及到 ζ ( s ) \zeta(s) ζ(s)在复平面上的零点分布。具体来说,它断言所有非平凡零点(即除了显而易见的负偶数整数零点之外的零点)都位于复平面的临界线上,即满足 R e ( s ) = 1 2 Re(s)=\frac{1}{2} Re(s)=21。这个猜想至今未被证明或反证,是数学中最著名的开放问题之一。

综上所述,黎曼ζ函数不仅是数学中的一个基本工具,它的深入研究还关联着许多深刻的数学理论和未解之谜。

这是一组关于黎曼函数(Riemann ζ-function)的公式。黎曼函数在数学中非常重要,特别是在解析数论和复分析领域。

  1. 第一个公式:
    ζ ( − 1 ) = 1 + 2 + 3 + 4 + 5 + ⋯ = − 1 12 \zeta(-1) = 1 + 2 + 3 + 4 + 5 + \cdots = -\frac{1}{12} ζ(1)=1+2+3+4+5+=121
    这个公式表示黎曼函数在-1处的值等于无穷级数1+2+3+…的和,这个级数是发散的,但通过解析延拓,可以得出其值为 − 1 12 -\frac{1}{12} 121

  2. 第二个公式:
    ζ ( − 2 ) = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + ⋯ = 0 \zeta(-2) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + \cdots = 0 ζ(2)=12+22+32+42+52+=0
    这个公式表示黎曼函数在-2处的值等于平方数序列1^2, 2^2, 3^2, …的和,这个级数也是发散的,但通过解析延拓,可以得出其值为0。

  3. 第三个公式:
    ζ ( − 3 ) = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + ⋯ = 1 120 \zeta(-3) = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + \cdots = \frac{1}{120} ζ(3)=13+23+33+43+53+=1201
    这个公式表示黎曼函数在-3处的值等于立方数序列1^3, 2^3, 3^3, …的和,这个级数同样是发散的,但通过解析延拓,可以得出其值为 1 120 \frac{1}{120} 1201

利用幂级数展开式:

x ( 1 − x ) 2 = x + 2 x 2 + 3 x 3 + . . . n x n \frac{x}{(1-x)^2} =x+2x^2+3x^3+...nx^n (1x)2x=x+2x2+3x3+...nxn
直观原理引用网上公众号“科普宇宙”易得:
在这里插入图片描述
在这里插入图片描述

令 x=-1,则: − 1 4 = − 1 + 2 − 3 + 4 − 5... = − ( 1 + 3 + 5 + . . . ) + ( 2 ∗ 2 + 4 ∗ 2 + 6 ∗ 2 + . . . ) = 3 ( 1 + 2 + 3 + . . . ) -\frac{1}{4}=-1+2-3+4-5...=-(1+3+5+...)+(2*2+4*2+6*2+...)=3(1+2+3+...) 41=1+23+45...=(1+3+5+...)+(22+42+62+...)=3(1+2+3+...)
ζ ( − 1 ) = 1 + 2 + 3 + 4 + 5 + ⋯ = − 1 12 \zeta(-1) = 1 + 2 + 3 + 4 + 5 + \cdots = -\frac{1}{12} ζ(1)=1+2+3+4+5+=121

2.证明
ζ ( s ) = 1 + 1 2 s + 1 3 s + 1 4 s + 1 5 s + ⋯ \zeta (s) = 1 + \frac{1}{2^{s}} + \frac{1}{3^{s}} + \frac{1}{4^{s}} + \frac{1}{5^{s}} + \cdots ζ(s)=1+2s1+3s1+4s1+5s1+
1 2 s ζ ( s ) = 1 2 s + 1 4 s + 1 6 s + 1 8 s + 1 1 0 s + ⋯ \frac{1}{2^{s}}\zeta (s) = \frac{1}{2^{s}} + \frac{1}{4^{s}} + \frac{1}{6^{s}} + \frac{1}{8^{s}} + \frac{1}{10^{s}} + \cdots 2s1ζ(s)=2s1+4s1+6s1+8s1+10s1+
( 1 − 1 2 s ) ζ ( s ) = 1 + 1 3 s + 1 5 s + 1 7 s + 1 9 s + 1 1 1 s + ⋯ ( 1 ) (1 - \frac{1}{2^{s}})\zeta (s) = 1 + \frac{1}{3^{s}} + \frac{1}{5^{s}} + \frac{1}{7^{s}} + \frac{1}{9^{s}} + \frac{1}{11^{s}} + \cdots \qquad (1) (12s1)ζ(s)=1+3s1+5s1+7s1+9s1+11s1+(1)
1 3 s ( 1 − 1 2 s ) ζ ( s ) = 1 3 s + 1 9 s + 1 1 5 s + 1 2 1 s + 1 2 7 s + ⋯ \frac{1}{3^{s}}(1 - \frac{1}{2^{s}})\zeta (s) = \frac{1}{3^{s}} + \frac{1}{9^{s}} + \frac{1}{15^{s}} + \frac{1}{21^{s}} + \frac{1}{27^{s}} + \cdots 3s1(12s1)ζ(s)=3s1+9s1+15s1+21s1+27s1+
( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 + 1 5 s + 1 7 s + 1 1 1 s + 1 1 3 s + 1 1 7 s + ⋯ ( 2 ) (1 - \frac{1}{3^{s}})(1 - \frac{1}{2^{s}})\zeta (s) = 1 + \frac{1}{5^{s}} + \frac{1}{7^{s}} + \frac{1}{11^{s}} + \frac{1}{13^{s}} + \frac{1}{17^{s}} + \cdots \qquad (2) (13s1)(12s1)ζ(s)=1+5s1+7s1+11s1+13s1+17s1+(2)
( 1 − 1 5 s ) ( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 + 1 7 s + 1 1 1 s + 1 1 3 s + 1 1 7 s + ⋯ ( 3 ) (1 - \frac{1}{5^{s}})(1 - \frac{1}{3^{s}})(1 - \frac{1}{2^{s}})\zeta (s) = 1 + \frac{1}{7^{s}} + \frac{1}{11^{s}} + \frac{1}{13^{s}} + \frac{1}{17^{s}} + \cdots \qquad (3) (15s1)(13s1)(12s1)ζ(s)=1+7s1+11s1+13s1+17s1+(3)
⋮ \vdots
⋯ ( 1 − 1 7 s ) ( 1 − 1 5 s ) ( 1 − 1 3 s ) ( 1 − 1 2 s ) ζ ( s ) = 1 \cdots (1 - \frac{1}{7^{s}})(1 - \frac{1}{5^{s}})(1 - \frac{1}{3^{s}})(1 - \frac{1}{2^{s}})\zeta (s) = 1 (17s1)(15s1)(13s1)(12s1)ζ(s)=1

黎曼ζ函数的无穷乘积公式。

ζ ( s ) = 1 ( 1 − 1 2 s ) ( 1 − 1 3 s ) ( 1 − 1 5 s ) ( 1 − 1 7 s ) ⋯ \zeta(s) = \frac{1}{(1 - \frac{1}{2^s})(1 - \frac{1}{3^s})(1 - \frac{1}{5^s})(1 - \frac{1}{7^s})\cdots} ζ(s)=(12s1)(13s1)(15s1)(17s1)1
接着,通过这个等式推导出另一个等式:
ζ ( s ) = ∑ n = 1 ∞ 1 n s = ∏ p p r i m e 1 1 − 1 p s = = ∏ p 1 1 − p − s \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p prime} \frac{1}{1 - \frac{1}{p^s}} == \prod_{p} \frac{1}{1 - p^{-s}} ζ(s)=n=1ns1=pprime1ps11==p1ps1

并且在Re(s)>1上收敛. 证明:
⋅ \cdot 在实轴上收敛
根据定义可以有:
ζ ( s ) = ( 1 1 s ) + ( 1 2 s + 1 3 s ) + ( 1 4 s + 1 5 s + 1 6 s + 1 7 s ) ⋯ \zeta (s )= \left (\frac{1}{1^{s}}\right ) +\left (\frac{1}{2^{s}}+\frac{1}{3^{s}}\right )+\left (\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}\right )\cdots ζ(s)=(1s1)+(2s1+3s1)+(4s1+5s1+6s1+7s1)
≤ ( 1 1 s ) + ( 1 2 s + 1 2 s ) + ( 1 4 s + 1 4 s + 1 4 s + 1 4 s ) ⋯ \le \left (\frac{1}{1^{s}}\right ) +\left (\frac{1}{2^{s}}+\frac{1}{2^{s}}\right ) +\left (\frac{1}{4^{s}}+\frac{1}{4^{s}}+\frac{1}{4^{s}}+\frac{1}{4^{s}}\right )\cdots (1s1)+(2s1+2s1)+(4s1+4s1+4s1+4s1)
= ( 1 1 s ) + ( 2 2 s ) + ( 4 4 s ) ⋯ = \left (\frac{1}{1^{s}}\right ) +\left (\frac{2}{2^{s}}\right ) +\left (\frac{4}{4^{s}}\right )\cdots =(1s1)+(2s2)+(4s4)
= ( 2 2 s ) 0 + ( 2 2 s ) 1 + ( 2 2 s ) 2 ⋯ = ∑ n ≥ 0 ( 2 1 − s ) n =\left (\frac{2}{2^{s}}\right )^{0}+\left (\frac{2}{2^{s}}\right )^{1} +\left (\frac{2}{2^{s}}\right )^{2}\cdots=\sum_{n\ge 0} (2^{1-s})^{n} =(2s2)0+(2s2)1+(2s2)2=n0(21s)n

如果对ζ提取公因式,比如:
1 1 s ⋅ 1 1 s ⋅ 1 3 s ⋅ … ⋅ 1 2 s ( 1 1 s ⋅ 1 1 s ⋅ 1 2 s ⋅ … ) \frac{1}{1^s}\cdot \frac{1}{1^s}\cdot \frac{1}{3^s}\cdot \ldots \cdot \frac{1}{2^s} \left(\frac{1}{1^s}\cdot \frac{1}{1^s}\cdot \frac{1}{2^s}\cdot \ldots \right) 1s11s13s12s1(1s11s12s1)
正如所有正整数都可以表示为几个质数的乘积一样,把所有可能的公因式都提取出来后可以得到:
ζ ( s ) = ( 1 2 0 s ⋅ 1 2 1 s ⋅ 1 2 2 s ⋯   ) + ( 1 3 0 s ⋅ 1 3 1 s ⋅ 1 3 2 s ⋯   ) + ( 1 5 0 s ⋅ 1 5 1 s ⋅ 1 5 2 s ⋯   ) ⋯ \zeta(s) = \left(\frac{1}{2^{0s}}\cdot \frac{1}{2^{1s}}\cdot \frac{1}{2^{2s}} \cdots \right) + \left(\frac{1}{3^{0s}}\cdot \frac{1}{3^{1s}}\cdot \frac{1}{3^{2s}} \cdots \right) + \left(\frac{1}{5^{0s}}\cdot \frac{1}{5^{1s}}\cdot \frac{1}{5^{2s}} \cdots \right)\cdots ζ(s)=(20s121s122s1)+(30s131s132s1)+(50s151s152s1)
= ∏ p ∑ n ≥ 0 1 p n s = \prod_{p}\sum_{n\ge 0} \frac{1}{p^{ns}} =pn0pns1
其中 ∏ p \prod_p p表示对所有质数求积。可以看到后面的求和实际上是等比数列的无穷项和,于是得出了ζ的欧拉乘积形式:
ζ ( s ) = ∏ p 1 1 − p − s \zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} ζ(s)=p1ps1

1 1 − x \frac{1}{1-x} 1x1的泰勒级数为:

1 1 − x = 1 + x + x 2 + x 3 + x 4 + x 5 + x 6 + ⋯ \frac{1}{1-x} = 1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + \cdots 1x1=1+x+x2+x3+x4+x5+x6+

这个公式表示的是当 ∣ x ∣ < 1 |x| < 1 x<1 时, 1 1 − x \frac{1}{1-x} 1x1 可以被展开为一个无穷级数。这是几何级数的一个特例,其公比为 x x x,首项为 1 1 1

S n = a 1 + a 1 q + ⋯ + a 1 q n − 2 + a 1 q n − 1 ⇒ S n − a 1 = a 1 q + a 1 q 2 ⋯ + a 1 q n − 2 + a 1 q n − 1 = q ( a 1 + a 1 q + ⋯ + a 1 q n − 2 ) = q ( S n − a 1 q n − 1 ) ⇒ S n = a 1 ( 1 − q n ) 1 − q ( q ≠ 1 ) . S_{n}=a_{1}+a_{1}q+\cdots +a_{1}q^{n-2}+a_{1}q^{n-1} \\ \Rightarrow S_{n}-a_{1}=a_{1}q+a_{1}q^{2}\cdots +a_{1}q^{n-2}+a_{1}q^{n-1} \\ =q(a_{1}+a_{1}q+\cdots +a_{1}q^{n-2}) \\ =q(S_{n}-a_{1}q^{n-1}) \\ \Rightarrow S_{n}=\frac{a_{1}(1-q^{n})}{1-q}(q \neq 1). Sn=a1+a1q++a1qn2+a1qn1Sna1=a1q+a1q2+a1qn2+a1qn1=q(a1+a1q++a1qn2)=q(Sna1qn1)Sn=1qa1(1qn)(q=1).

S n = a 1 + a 2 + a 3 + ⋯ + a n S_{n}=a _ { 1 } + a _ { 2 } + a _ { 3 } + \cdots + a _ { n} Sn=a1+a2+a3++an
S n = a 1 + a 1 q + a 1 q 2 + a 1 q 3 + ⋯ + a 1 q n − 1 S_{n}=a _ { 1 } + a _ { 1 } q + a _ { 1 } q ^ { 2 } + a _ { 1 } q ^ { 3 } + \cdots + a _ { 1 } q ^ { n - 1} Sn=a1+a1q+a1q2+a1q3++a1qn1
q S n = a 1 q + a 1 q 2 + a 1 q 3 + ⋯ + a 1 q n − 1 + a 1 q n q S_{n} = a _ { 1 } q + a _ { 1 } q ^ { 2 } + a _ { 1 } q ^ { 3 } + \cdots + a _ { 1 } q ^ { n - 1 } + a _ { 1 } q ^ { n } qSn=a1q+a1q2+a1q3++a1qn1+a1qn
( 1 − q ) S n = a 1 − a 1 q n , 若 q = 1 , S n = n a 1 (1-q)S_{n}=a_{1}-a_{1}q^{n} ,若q=1,S_{n}=na_{1} (1q)Sn=a1a1qn,q=1,Sn=na1
S n = a 1 ( 1 − q n ) 1 − q { n a 1 , ( q = 1 ) , a 1 ( 1 − q n ) 1 − q , ( q ≠ 1 ) . S_{n}=\frac{a_{1}(1-q^n)}{1-q} \left \{\begin{matrix} na_{1},(q=1),\frac{a_{1}(1-q^{n})}{1-q},(q \neq 1).\end{matrix}\right. Sn=1qa1(1qn){na1,(q=1),1qa1(1qn),(q=1).

将实数x替换为 1 2 i \frac{1}{2}i 21i,从而将问题从实数域扩展到复数域。随后,通过泰勒级数展开 1 1 − 1 2 i \frac{1}{1-\frac{1}{2}i} 121i1,得到级数 1 + 1 2 i + ( 1 2 i ) 2 + ( 1 2 i ) 3 + ⋯ = 1 + 1 2 i − 1 4 − 1 8 + 1 16 + 1 32 − 1 64 ⋯ 1+\frac{1}{2}i+(\frac{1}{2}i)^2+(\frac{1}{2}i)^3+\cdots=1+\frac{1}{2}i-\frac{1}{4}-\frac{1}{8}+\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\cdots 1+21i+(21i)2+(21i)3+=1+21i4181+161+321641,进一步简化后得到 1 1 − 1 2 i = 0.8 + 0.4 i \frac{1}{1-\frac{1}{2}i}=0.8+0.4i 121i1=0.8+0.4i
最后,通过分子分母乘以共轭复数的方法,验证了级数的收敛性,最终收敛到点 ( 0.8 , 0.4 ) (0.8,0.4) (0.8,0.4)

黎曼ζ函数

公式如下:
1 ζ ( s ) = ∑ n ∈ N μ ( n ) n s \frac{1}{\zeta(s)}=\sum _{n\in N}\frac{\mu(n)}{n^{s}} ζ(s)1=nNnsμ(n)
ζ函数是黎曼ζ函数,它的定义如下:
1 ζ ( s ) = 1 − 1 2 s − 1 3 s − 1 5 s + 1 6 s − 1 7 s + 1 1 0 s − ⋯ \frac{1}{\zeta(s)} = 1 - \frac{1}{2^s} - \frac{1}{3^s} - \frac{1}{5^s} + \frac{1}{6^s} - \frac{1}{7^s} + \frac{1}{10^s} - \cdots ζ(s)1=12s13s15s1+6s17s1+10s1

sinx 的泰勒展开:
sin ⁡ ( x ) ≈ x − x 3 3 ! + x 5 5 ! − x 7 7 ! + . . . − ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! \sin (x)\approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+...-(-1)^{n}\frac{x^{2n+1}}{(2n+1)!} sin(x)x3!x3+5!x57!x7+...(1)n(2n+1)!x2n+1

s i n ( x ) x = ( 1 − x 2 π 2 ) ( 1 − x 2 ( 2 π ) 2 ) ⋯ = ∏ n = 1 ∞ ( 1 − x 2 n 2 π 2 ) \frac{sin(x)}{x}=(1-\frac{x^2}{\pi^2})(1-\frac{x^2}{(2\pi)^2}) \cdots =\prod_{n=1}^{\infty}(1-\frac{x^2}{n^2\pi^2}) xsin(x)=(1π2x2)(1(2π)2x2)=n=1(1n2π2x2)
= x 4 2 π 4 [ 1 + 1 2 + ⋯ + 1 n 2 ] ∑ n = 1 ∞ 1 n 2 − ∑ n = 1 ∞ 1 n 4 =\frac{x^4}{2\pi ^4}[1+\frac{1}{2}+\cdots +\frac{1}{n^2}]\sum_{n=1}^{\infty}\frac{1}{n^2}-\sum_{n=1}^{\infty}\frac{1}{n^4} =2π4x4[1+21++n21]n=1n21n=1n41
上式为零的根为 ± k π \pm k\pi ±,k为非零整数
由乘法分配律,四次幂前的系数为 x 4 5 ! \frac{x^{4}}{5!} 5!x4
x 4 2 π 4 ( [ ∑ n = 1 ∞ 1 n 2 + ∑ n = 1 ∞ 1 ( 2 n ) 2 + ⋯ + ∑ n = 1 ∞ 1 ( n × n ) 2 − ( 1 + 1 ( 2 × 2 ) 2 + 1 ( 3 × 3 ) 2 + ⋯   ) ] ) \frac{x^4}{2\pi ^4}([\sum_{n=1}^{\infty}\frac{1}{n^2}+\sum_{n=1}^{\infty}\frac{1}{(2n)^2}+\cdots +\sum_{n=1}^{\infty}\frac{1}{(n\times n)^2}-(1+\frac{1}{(2\times 2)^2}+\frac{1}{(3\times 3)^2}+\cdots)]) 2π4x4([n=1n21+n=1(2n)21++n=1(n×n)21(1+(2×2)21+(3×3)21+)])

x 4 5 ! = ζ ( 2 ) 2 − ζ ( 4 ) 2 π 4 x 4 \frac{x^{4}}{5!}=\frac{{\zeta}(2)^{2}-\zeta(4)}{2\pi^{4}}x^{4} 5!x4=2π4ζ(2)2ζ(4)x4
ζ ( 4 ) = π 4 90 \zeta (4)=\frac{{\pi}^{4}}{90} ζ(4)=90π4

ζ ( 2 ) = 1 1 2 + 1 2 2 + 1 3 2 + ⋯ = π 2 6 \zeta (2) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{{\pi}^2}{6} ζ(2)=121+221+321+=6π2
ζ ( 4 ) = 1 1 4 + 1 2 4 + 1 3 4 + ⋯ = π 4 90 \zeta (4) = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots = \frac{{\pi}^4}{90} ζ(4)=141+241+341+=90π4
ζ ( 6 ) = 1 1 6 + 1 2 6 + 1 3 6 + ⋯ = π 6 945 \zeta (6) = \frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \cdots = \frac{{\pi}^6}{945} ζ(6)=161+261+361+=945π6
ζ ( 8 ) = 1 1 8 + 1 2 8 + 1 3 8 + ⋯ = π 8 9450 \zeta (8) = \frac{1}{1^8} + \frac{1}{2^8} + \frac{1}{3^8} + \cdots = \frac{{\pi}^8}{9450} ζ(8)=181+281+381+=9450π8

构造傅里叶级数求解该无穷级数
f ( x ) = x 2 , x ∈ [ − π , π ] f(x) = x^2,x ∈ [-π, π] f(x)=x2x[π,π]
对其进行周期延拓
由周期为两个圆周率上的傅里叶级数
f(x) = a 0 2 \frac{a_0}{2} 2a0 + ∑ n = 1 ∞ a n cos ⁡ n x + b n sin ⁡ n x \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx n=1ancosnx+bnsinnx

傅里叶级数是一种数学工具,用于将周期性函数表示为一系列正弦和余弦函数的无穷级数。这种表示形式允许我们将复杂的周期函数分解成简单的振荡成分,这些成分的频率是整数倍的关系。傅里叶级数在信号处理、振动分析、热传导等领域中有着广泛的应用。

傅里叶级数的基本思想是将一个周期函数 f(x) 展开为如下形式的级数:

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ ( 2 π n x P ) + b n sin ⁡ ( 2 π n x P ) ) f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{2\pi n x}{P}\right) + b_n \sin\left(\frac{2\pi n x}{P}\right) \right) f(x)=2a0+n=1(ancos(P2πnx)+bnsin(P2πnx))

其中:
P 是函数的周期。 a 0 , a n , b n 是傅里叶系数,它们可以通过积分计算得到: P 是函数的周期。 a_0, a_n, b_n 是傅里叶系数,它们可以通过积分计算得到: P是函数的周期。a0,an,bn是傅里叶系数,它们可以通过积分计算得到:
a 0 = 2 P ∫ − P 2 P 2 f ( x )   d x a_0 = \frac{2}{P} \int_{-\frac{P}{2}}^{\frac{P}{2}} f(x) \, dx a0=P22P2Pf(x)dx
a n = 2 P ∫ − P 2 P 2 f ( x ) cos ⁡ ( 2 π n x P )   d x a_n = \frac{2}{P} \int_{-\frac{P}{2}}^{\frac{P}{2}} f(x) \cos\left(\frac{2\pi n x}{P}\right) \, dx an=P22P2Pf(x)cos(P2πnx)dx
b n = 2 P ∫ − P 2 P 2 f ( x ) sin ⁡ ( 2 π n x P )   d x b_n = \frac{2}{P} \int_{-\frac{P}{2}}^{\frac{P}{2}} f(x) \sin\left(\frac{2\pi n x}{P}\right) \, dx bn=P22P2Pf(x)sin(P2πnx)dx

傅里叶级数提供了一种分析函数在不同频率上的行为的方法,这对于理解复杂波形的性质非常有用。通过调整级数中的项数,我们可以控制近似的精度,从而更好地理解和处理信号。

a 0 = 2 π ∫ 0 π x 2 d x = 2 π 2 3 a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^2}{3} a0=π20πx2dx=32π2

a n = 2 π ∫ 0 π f ( x ) cos ⁡ n x d x a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos n x dx an=π20πf(x)cosnxdx

= 2 π ∫ 0 π x 2 cos ⁡ n x d x = \frac{2}{\pi} \int_0^{\pi} x^2 \cos n x dx =π20πx2cosnxdx

= 4 n 2 ( − 1 ) n = \frac{4}{n^2}(-1)^n =n24(1)n
b n = 0 b_n=0 bn=0

f ( x ) = x 2 = π 2 3 + 4 ∑ n = 1 ∞ ( − 1 ) n n 2 cos ⁡ n x f(x) = x^2 = \frac{{\pi}^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos n x f(x)=x2=3π2+4n=1n2(1)ncosnx

x = π , cos ⁡ n x = cos ⁡ n π = ( − 1 ) n x = \pi, \cos nx = \cos n\pi = (-1)^n x=π,cosnx=cos=(1)n

∑ n = 1 ∞ 1 n 2 = π 2 6 \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{{\pi}^2}{6} n=1n21=6π2

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cmzhg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值