π \pi π之黎曼ζ函数
巴塞尔问题的欧拉证明
sinx无穷乘积形式,根为正弦函数的非零零点
s i n ( x ) = ( x + 2 π ) ( x + π ) ( x ) ( x − π ) ( x − 2 π ) ⋯ sin(x) = (x+2\pi)(x+\pi)(x)(x-\pi)(x-2\pi)\cdots sin(x)=(x+2π)(x+π)(x)(x−π)(x−2π)⋯
x ( x 2 − π 2 ) ( x 2 − 2 2 π 2 ) ( x 2 − 3 2 π 2 ) ⋯ x(x^2 - \pi^2)(x^2 - 2^2 \pi^2)(x^2 - 3^2 \pi^2) \cdots x(x2−π2)(x2−22π2)(x2−32π2)⋯
通过系数C来收敛函数,使得函数的输出更加平滑,从而提高函数的逼近性能。
lim
x
→
0
sin
(
x
)
x
=
lim
x
→
0
C
(
x
2
−
π
2
)
(
x
2
−
2
2
π
2
)
(
x
2
−
3
2
π
2
)
⋯
\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} C(x^2 - \pi^2)(x^2 - 2^2\pi^2)(x^2 - 3^2\pi^2) \cdots
x→0limxsin(x)=x→0limC(x2−π2)(x2−22π2)(x2−32π2)⋯
C = 1 ( − π 2 ) ( − 2 2 π 2 ) ( − 3 2 π 2 ) ⋯ C = \frac{1}{(-\pi^2)(-2^2\pi^2)(-3^2\pi^2)\cdots} C=(−π2)(−22π2)(−32π2)⋯1
无穷和形式
sin ( x ) = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots sin(x)=x−3!x3+5!x5−7!x7+⋯
无穷积形式
sin ( x ) = x ( 1 − x 2 π 2 ) ( 1 − x 2 2 2 π 2 ) ( 1 − x 2 3 2 π 2 ) ⋯ \sin(x) = x \left(1 - \frac{x^2}{\pi^2}\right) \left(1 - \frac{x^2}{2^2 \pi^2}\right) \left(1 - \frac{x^2}{3^2 \pi^2}\right) \cdots sin(x)=x(1−π2x2)(1−22π2x2)(1−32π2x2)⋯
此式可以求sin1,sin2的近似值。
x
(
1
−
(
1
π
2
+
1
2
2
π
2
+
1
3
2
π
2
+
⋯
)
x
2
+
⋯
)
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
⋯
x\left(1 - \left(\frac{1}{\pi^2} + \frac{1}{2^2\pi^2} + \frac{1}{3^2\pi^2} + \cdots \right) x^2 + \cdots \right) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
x(1−(π21+22π21+32π21+⋯)x2+⋯)=x−3!x3+5!x5−7!x7+⋯
两边同时除以 ( x ),得到:
1
−
(
1
π
2
+
1
2
2
π
2
+
1
3
2
π
2
+
⋯
)
x
2
+
⋯
=
1
−
x
2
3
!
+
x
4
5
!
−
x
6
7
!
+
⋯
1 - \left(\frac{1}{\pi^2} + \frac{1}{2^2\pi^2} + \frac{1}{3^2\pi^2} + \cdots \right) x^2 + \cdots = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots
1−(π21+22π21+32π21+⋯)x2+⋯=1−3!x2+5!x4−7!x6+⋯
那么它们的二次系数也必然是相等的。
1
π
2
+
1
2
2
π
2
+
1
3
2
π
2
+
⋯
=
1
3
!
\frac{1}{\pi^2} + \frac{1}{2^2\pi^2} + \frac{1}{3^2\pi^2} + \cdots = \frac{1}{3!}
π21+22π21+32π21+⋯=3!1
两边同时乘以
π
2
\pi^2
π2,得到:
1
+
1
2
2
+
1
3
2
+
⋯
=
π
2
6
1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}
1+221+321+⋯=6π2
【解析推导】
黎曼函数,通常指的是黎曼ζ函数,是一个在数学分析中非常重要的函数,尤其是在数论和复分析领域。我们可以了解到黎曼ζ函数有两种主要的表达形式:
-
级数定义:
黎曼ζ函数可以通过一个无穷级数来定义,即对于任意复数 s s s,其实数部分大于1时,有:
ζ ( s ) = ∑ n = 1 ∞ 1 n s \zeta (s) = \sum_{n=1}^{\infty} \frac{1}{n^s} ζ(s)=n=1∑∞ns1
这个级数在 R e ( s ) > 1 Re(s) > 1 Re(s)>1的区域上收敛,并且在此区域内定义了一个全纯函数。 -
积分定义:
另一种定义方式是通过一个特定的积分表达式,即:
ζ ( s ) = 1 Γ ( s ) ∫ 0 ∞ x s − 1 e x − 1 d x \zeta (s) = \frac{1}{\Gamma (s)} \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx ζ(s)=Γ(s)1∫0∞ex−1xs−1dx
这里 Γ ( s ) \Gamma(s) Γ(s)是伽马函数,它是阶乘概念在复数域上的推广。
拓展到复平面:
波恩哈德·黎曼进一步研究了这一函数,并发现通过解析延拓的方法,可以将
ζ
(
s
)
\zeta(s)
ζ(s)的定义扩展到整个复平面(除了
s
=
1
s=1
s=1这一点),使其成为一个全纯函数。这意味着在复平面上除了
s
=
1
s=1
s=1外的任何点,
ζ
(
s
)
\zeta(s)
ζ(s)都是解析的,即在该点的邻域内可以展开为泰勒级数。
黎曼猜想:
黎曼猜想涉及到
ζ
(
s
)
\zeta(s)
ζ(s)在复平面上的零点分布。具体来说,它断言所有非平凡零点(即除了显而易见的负偶数整数零点之外的零点)都位于复平面的临界线上,即满足
R
e
(
s
)
=
1
2
Re(s)=\frac{1}{2}
Re(s)=21。这个猜想至今未被证明或反证,是数学中最著名的开放问题之一。
综上所述,黎曼ζ函数不仅是数学中的一个基本工具,它的深入研究还关联着许多深刻的数学理论和未解之谜。
这是一组关于黎曼函数(Riemann ζ-function)的公式。黎曼函数在数学中非常重要,特别是在解析数论和复分析领域。
-
第一个公式:
ζ ( − 1 ) = 1 + 2 + 3 + 4 + 5 + ⋯ = − 1 12 \zeta(-1) = 1 + 2 + 3 + 4 + 5 + \cdots = -\frac{1}{12} ζ(−1)=1+2+3+4+5+⋯=−121
这个公式表示黎曼函数在-1处的值等于无穷级数1+2+3+…的和,这个级数是发散的,但通过解析延拓,可以得出其值为 − 1 12 -\frac{1}{12} −121。 -
第二个公式:
ζ ( − 2 ) = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + ⋯ = 0 \zeta(-2) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + \cdots = 0 ζ(−2)=12+22+32+42+52+⋯=0
这个公式表示黎曼函数在-2处的值等于平方数序列1^2, 2^2, 3^2, …的和,这个级数也是发散的,但通过解析延拓,可以得出其值为0。 -
第三个公式:
ζ ( − 3 ) = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + ⋯ = 1 120 \zeta(-3) = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + \cdots = \frac{1}{120} ζ(−3)=13+23+33+43+53+⋯=1201
这个公式表示黎曼函数在-3处的值等于立方数序列1^3, 2^3, 3^3, …的和,这个级数同样是发散的,但通过解析延拓,可以得出其值为 1 120 \frac{1}{120} 1201。
利用幂级数展开式:
x
(
1
−
x
)
2
=
x
+
2
x
2
+
3
x
3
+
.
.
.
n
x
n
\frac{x}{(1-x)^2} =x+2x^2+3x^3+...nx^n
(1−x)2x=x+2x2+3x3+...nxn
直观原理引用网上公众号“科普宇宙”易得:
令 x=-1,则:
−
1
4
=
−
1
+
2
−
3
+
4
−
5...
=
−
(
1
+
3
+
5
+
.
.
.
)
+
(
2
∗
2
+
4
∗
2
+
6
∗
2
+
.
.
.
)
=
3
(
1
+
2
+
3
+
.
.
.
)
-\frac{1}{4}=-1+2-3+4-5...=-(1+3+5+...)+(2*2+4*2+6*2+...)=3(1+2+3+...)
−41=−1+2−3+4−5...=−(1+3+5+...)+(2∗2+4∗2+6∗2+...)=3(1+2+3+...)
ζ
(
−
1
)
=
1
+
2
+
3
+
4
+
5
+
⋯
=
−
1
12
\zeta(-1) = 1 + 2 + 3 + 4 + 5 + \cdots = -\frac{1}{12}
ζ(−1)=1+2+3+4+5+⋯=−121
2.证明
ζ
(
s
)
=
1
+
1
2
s
+
1
3
s
+
1
4
s
+
1
5
s
+
⋯
\zeta (s) = 1 + \frac{1}{2^{s}} + \frac{1}{3^{s}} + \frac{1}{4^{s}} + \frac{1}{5^{s}} + \cdots
ζ(s)=1+2s1+3s1+4s1+5s1+⋯
1
2
s
ζ
(
s
)
=
1
2
s
+
1
4
s
+
1
6
s
+
1
8
s
+
1
1
0
s
+
⋯
\frac{1}{2^{s}}\zeta (s) = \frac{1}{2^{s}} + \frac{1}{4^{s}} + \frac{1}{6^{s}} + \frac{1}{8^{s}} + \frac{1}{10^{s}} + \cdots
2s1ζ(s)=2s1+4s1+6s1+8s1+10s1+⋯
(
1
−
1
2
s
)
ζ
(
s
)
=
1
+
1
3
s
+
1
5
s
+
1
7
s
+
1
9
s
+
1
1
1
s
+
⋯
(
1
)
(1 - \frac{1}{2^{s}})\zeta (s) = 1 + \frac{1}{3^{s}} + \frac{1}{5^{s}} + \frac{1}{7^{s}} + \frac{1}{9^{s}} + \frac{1}{11^{s}} + \cdots \qquad (1)
(1−2s1)ζ(s)=1+3s1+5s1+7s1+9s1+11s1+⋯(1)
1
3
s
(
1
−
1
2
s
)
ζ
(
s
)
=
1
3
s
+
1
9
s
+
1
1
5
s
+
1
2
1
s
+
1
2
7
s
+
⋯
\frac{1}{3^{s}}(1 - \frac{1}{2^{s}})\zeta (s) = \frac{1}{3^{s}} + \frac{1}{9^{s}} + \frac{1}{15^{s}} + \frac{1}{21^{s}} + \frac{1}{27^{s}} + \cdots
3s1(1−2s1)ζ(s)=3s1+9s1+15s1+21s1+27s1+⋯
(
1
−
1
3
s
)
(
1
−
1
2
s
)
ζ
(
s
)
=
1
+
1
5
s
+
1
7
s
+
1
1
1
s
+
1
1
3
s
+
1
1
7
s
+
⋯
(
2
)
(1 - \frac{1}{3^{s}})(1 - \frac{1}{2^{s}})\zeta (s) = 1 + \frac{1}{5^{s}} + \frac{1}{7^{s}} + \frac{1}{11^{s}} + \frac{1}{13^{s}} + \frac{1}{17^{s}} + \cdots \qquad (2)
(1−3s1)(1−2s1)ζ(s)=1+5s1+7s1+11s1+13s1+17s1+⋯(2)
(
1
−
1
5
s
)
(
1
−
1
3
s
)
(
1
−
1
2
s
)
ζ
(
s
)
=
1
+
1
7
s
+
1
1
1
s
+
1
1
3
s
+
1
1
7
s
+
⋯
(
3
)
(1 - \frac{1}{5^{s}})(1 - \frac{1}{3^{s}})(1 - \frac{1}{2^{s}})\zeta (s) = 1 + \frac{1}{7^{s}} + \frac{1}{11^{s}} + \frac{1}{13^{s}} + \frac{1}{17^{s}} + \cdots \qquad (3)
(1−5s1)(1−3s1)(1−2s1)ζ(s)=1+7s1+11s1+13s1+17s1+⋯(3)
⋮
\vdots
⋮
⋯
(
1
−
1
7
s
)
(
1
−
1
5
s
)
(
1
−
1
3
s
)
(
1
−
1
2
s
)
ζ
(
s
)
=
1
\cdots (1 - \frac{1}{7^{s}})(1 - \frac{1}{5^{s}})(1 - \frac{1}{3^{s}})(1 - \frac{1}{2^{s}})\zeta (s) = 1
⋯(1−7s1)(1−5s1)(1−3s1)(1−2s1)ζ(s)=1
黎曼ζ函数的无穷乘积公式。
:
ζ
(
s
)
=
1
(
1
−
1
2
s
)
(
1
−
1
3
s
)
(
1
−
1
5
s
)
(
1
−
1
7
s
)
⋯
\zeta(s) = \frac{1}{(1 - \frac{1}{2^s})(1 - \frac{1}{3^s})(1 - \frac{1}{5^s})(1 - \frac{1}{7^s})\cdots}
ζ(s)=(1−2s1)(1−3s1)(1−5s1)(1−7s1)⋯1
接着,通过这个等式推导出另一个等式:
ζ
(
s
)
=
∑
n
=
1
∞
1
n
s
=
∏
p
p
r
i
m
e
1
1
−
1
p
s
=
=
∏
p
1
1
−
p
−
s
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p prime} \frac{1}{1 - \frac{1}{p^s}} == \prod_{p} \frac{1}{1 - p^{-s}}
ζ(s)=n=1∑∞ns1=pprime∏1−ps11==p∏1−p−s1
并且在Re(s)>1上收敛. 证明:
⋅
\cdot
⋅ 在实轴上收敛
根据定义可以有:
ζ
(
s
)
=
(
1
1
s
)
+
(
1
2
s
+
1
3
s
)
+
(
1
4
s
+
1
5
s
+
1
6
s
+
1
7
s
)
⋯
\zeta (s )= \left (\frac{1}{1^{s}}\right ) +\left (\frac{1}{2^{s}}+\frac{1}{3^{s}}\right )+\left (\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\frac{1}{7^{s}}\right )\cdots
ζ(s)=(1s1)+(2s1+3s1)+(4s1+5s1+6s1+7s1)⋯
≤
(
1
1
s
)
+
(
1
2
s
+
1
2
s
)
+
(
1
4
s
+
1
4
s
+
1
4
s
+
1
4
s
)
⋯
\le \left (\frac{1}{1^{s}}\right ) +\left (\frac{1}{2^{s}}+\frac{1}{2^{s}}\right ) +\left (\frac{1}{4^{s}}+\frac{1}{4^{s}}+\frac{1}{4^{s}}+\frac{1}{4^{s}}\right )\cdots
≤(1s1)+(2s1+2s1)+(4s1+4s1+4s1+4s1)⋯
=
(
1
1
s
)
+
(
2
2
s
)
+
(
4
4
s
)
⋯
= \left (\frac{1}{1^{s}}\right ) +\left (\frac{2}{2^{s}}\right ) +\left (\frac{4}{4^{s}}\right )\cdots
=(1s1)+(2s2)+(4s4)⋯
=
(
2
2
s
)
0
+
(
2
2
s
)
1
+
(
2
2
s
)
2
⋯
=
∑
n
≥
0
(
2
1
−
s
)
n
=\left (\frac{2}{2^{s}}\right )^{0}+\left (\frac{2}{2^{s}}\right )^{1} +\left (\frac{2}{2^{s}}\right )^{2}\cdots=\sum_{n\ge 0} (2^{1-s})^{n}
=(2s2)0+(2s2)1+(2s2)2⋯=n≥0∑(21−s)n
如果对ζ提取公因式,比如:
1
1
s
⋅
1
1
s
⋅
1
3
s
⋅
…
⋅
1
2
s
(
1
1
s
⋅
1
1
s
⋅
1
2
s
⋅
…
)
\frac{1}{1^s}\cdot \frac{1}{1^s}\cdot \frac{1}{3^s}\cdot \ldots \cdot \frac{1}{2^s} \left(\frac{1}{1^s}\cdot \frac{1}{1^s}\cdot \frac{1}{2^s}\cdot \ldots \right)
1s1⋅1s1⋅3s1⋅…⋅2s1(1s1⋅1s1⋅2s1⋅…)
正如所有正整数都可以表示为几个质数的乘积一样,把所有可能的公因式都提取出来后可以得到:
ζ
(
s
)
=
(
1
2
0
s
⋅
1
2
1
s
⋅
1
2
2
s
⋯
)
+
(
1
3
0
s
⋅
1
3
1
s
⋅
1
3
2
s
⋯
)
+
(
1
5
0
s
⋅
1
5
1
s
⋅
1
5
2
s
⋯
)
⋯
\zeta(s) = \left(\frac{1}{2^{0s}}\cdot \frac{1}{2^{1s}}\cdot \frac{1}{2^{2s}} \cdots \right) + \left(\frac{1}{3^{0s}}\cdot \frac{1}{3^{1s}}\cdot \frac{1}{3^{2s}} \cdots \right) + \left(\frac{1}{5^{0s}}\cdot \frac{1}{5^{1s}}\cdot \frac{1}{5^{2s}} \cdots \right)\cdots
ζ(s)=(20s1⋅21s1⋅22s1⋯)+(30s1⋅31s1⋅32s1⋯)+(50s1⋅51s1⋅52s1⋯)⋯
=
∏
p
∑
n
≥
0
1
p
n
s
= \prod_{p}\sum_{n\ge 0} \frac{1}{p^{ns}}
=p∏n≥0∑pns1
其中
∏
p
\prod_p
∏p表示对所有质数求积。可以看到后面的求和实际上是等比数列的无穷项和,于是得出了ζ的欧拉乘积形式:
ζ
(
s
)
=
∏
p
1
1
−
p
−
s
\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}}
ζ(s)=p∏1−p−s1
1 1 − x \frac{1}{1-x} 1−x1的泰勒级数为:
1 1 − x = 1 + x + x 2 + x 3 + x 4 + x 5 + x 6 + ⋯ \frac{1}{1-x} = 1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + \cdots 1−x1=1+x+x2+x3+x4+x5+x6+⋯
这个公式表示的是当 ∣ x ∣ < 1 |x| < 1 ∣x∣<1 时, 1 1 − x \frac{1}{1-x} 1−x1 可以被展开为一个无穷级数。这是几何级数的一个特例,其公比为 x x x,首项为 1 1 1。
S n = a 1 + a 1 q + ⋯ + a 1 q n − 2 + a 1 q n − 1 ⇒ S n − a 1 = a 1 q + a 1 q 2 ⋯ + a 1 q n − 2 + a 1 q n − 1 = q ( a 1 + a 1 q + ⋯ + a 1 q n − 2 ) = q ( S n − a 1 q n − 1 ) ⇒ S n = a 1 ( 1 − q n ) 1 − q ( q ≠ 1 ) . S_{n}=a_{1}+a_{1}q+\cdots +a_{1}q^{n-2}+a_{1}q^{n-1} \\ \Rightarrow S_{n}-a_{1}=a_{1}q+a_{1}q^{2}\cdots +a_{1}q^{n-2}+a_{1}q^{n-1} \\ =q(a_{1}+a_{1}q+\cdots +a_{1}q^{n-2}) \\ =q(S_{n}-a_{1}q^{n-1}) \\ \Rightarrow S_{n}=\frac{a_{1}(1-q^{n})}{1-q}(q \neq 1). Sn=a1+a1q+⋯+a1qn−2+a1qn−1⇒Sn−a1=a1q+a1q2⋯+a1qn−2+a1qn−1=q(a1+a1q+⋯+a1qn−2)=q(Sn−a1qn−1)⇒Sn=1−qa1(1−qn)(q=1).
S
n
=
a
1
+
a
2
+
a
3
+
⋯
+
a
n
S_{n}=a _ { 1 } + a _ { 2 } + a _ { 3 } + \cdots + a _ { n}
Sn=a1+a2+a3+⋯+an
S
n
=
a
1
+
a
1
q
+
a
1
q
2
+
a
1
q
3
+
⋯
+
a
1
q
n
−
1
S_{n}=a _ { 1 } + a _ { 1 } q + a _ { 1 } q ^ { 2 } + a _ { 1 } q ^ { 3 } + \cdots + a _ { 1 } q ^ { n - 1}
Sn=a1+a1q+a1q2+a1q3+⋯+a1qn−1
q
S
n
=
a
1
q
+
a
1
q
2
+
a
1
q
3
+
⋯
+
a
1
q
n
−
1
+
a
1
q
n
q S_{n} = a _ { 1 } q + a _ { 1 } q ^ { 2 } + a _ { 1 } q ^ { 3 } + \cdots + a _ { 1 } q ^ { n - 1 } + a _ { 1 } q ^ { n }
qSn=a1q+a1q2+a1q3+⋯+a1qn−1+a1qn
(
1
−
q
)
S
n
=
a
1
−
a
1
q
n
,
若
q
=
1
,
S
n
=
n
a
1
(1-q)S_{n}=a_{1}-a_{1}q^{n} ,若q=1,S_{n}=na_{1}
(1−q)Sn=a1−a1qn,若q=1,Sn=na1
S
n
=
a
1
(
1
−
q
n
)
1
−
q
{
n
a
1
,
(
q
=
1
)
,
a
1
(
1
−
q
n
)
1
−
q
,
(
q
≠
1
)
.
S_{n}=\frac{a_{1}(1-q^n)}{1-q} \left \{\begin{matrix} na_{1},(q=1),\frac{a_{1}(1-q^{n})}{1-q},(q \neq 1).\end{matrix}\right.
Sn=1−qa1(1−qn){na1,(q=1),1−qa1(1−qn),(q=1).
将实数x替换为
1
2
i
\frac{1}{2}i
21i,从而将问题从实数域扩展到复数域。随后,通过泰勒级数展开
1
1
−
1
2
i
\frac{1}{1-\frac{1}{2}i}
1−21i1,得到级数
1
+
1
2
i
+
(
1
2
i
)
2
+
(
1
2
i
)
3
+
⋯
=
1
+
1
2
i
−
1
4
−
1
8
+
1
16
+
1
32
−
1
64
⋯
1+\frac{1}{2}i+(\frac{1}{2}i)^2+(\frac{1}{2}i)^3+\cdots=1+\frac{1}{2}i-\frac{1}{4}-\frac{1}{8}+\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\cdots
1+21i+(21i)2+(21i)3+⋯=1+21i−41−81+161+321−641⋯,进一步简化后得到
1
1
−
1
2
i
=
0.8
+
0.4
i
\frac{1}{1-\frac{1}{2}i}=0.8+0.4i
1−21i1=0.8+0.4i。
最后,通过分子分母乘以共轭复数的方法,验证了级数的收敛性,最终收敛到点
(
0.8
,
0.4
)
(0.8,0.4)
(0.8,0.4)。
黎曼ζ函数
公式如下:
1
ζ
(
s
)
=
∑
n
∈
N
μ
(
n
)
n
s
\frac{1}{\zeta(s)}=\sum _{n\in N}\frac{\mu(n)}{n^{s}}
ζ(s)1=n∈N∑nsμ(n)
ζ函数是黎曼ζ函数,它的定义如下:
1
ζ
(
s
)
=
1
−
1
2
s
−
1
3
s
−
1
5
s
+
1
6
s
−
1
7
s
+
1
1
0
s
−
⋯
\frac{1}{\zeta(s)} = 1 - \frac{1}{2^s} - \frac{1}{3^s} - \frac{1}{5^s} + \frac{1}{6^s} - \frac{1}{7^s} + \frac{1}{10^s} - \cdots
ζ(s)1=1−2s1−3s1−5s1+6s1−7s1+10s1−⋯
sinx 的泰勒展开:
sin
(
x
)
≈
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
.
.
.
−
(
−
1
)
n
x
2
n
+
1
(
2
n
+
1
)
!
\sin (x)\approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+...-(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}
sin(x)≈x−3!x3+5!x5−7!x7+...−(−1)n(2n+1)!x2n+1
s
i
n
(
x
)
x
=
(
1
−
x
2
π
2
)
(
1
−
x
2
(
2
π
)
2
)
⋯
=
∏
n
=
1
∞
(
1
−
x
2
n
2
π
2
)
\frac{sin(x)}{x}=(1-\frac{x^2}{\pi^2})(1-\frac{x^2}{(2\pi)^2}) \cdots =\prod_{n=1}^{\infty}(1-\frac{x^2}{n^2\pi^2})
xsin(x)=(1−π2x2)(1−(2π)2x2)⋯=n=1∏∞(1−n2π2x2)
=
x
4
2
π
4
[
1
+
1
2
+
⋯
+
1
n
2
]
∑
n
=
1
∞
1
n
2
−
∑
n
=
1
∞
1
n
4
=\frac{x^4}{2\pi ^4}[1+\frac{1}{2}+\cdots +\frac{1}{n^2}]\sum_{n=1}^{\infty}\frac{1}{n^2}-\sum_{n=1}^{\infty}\frac{1}{n^4}
=2π4x4[1+21+⋯+n21]n=1∑∞n21−n=1∑∞n41
上式为零的根为
±
k
π
\pm k\pi
±kπ,k为非零整数
由乘法分配律,四次幂前的系数为
x
4
5
!
\frac{x^{4}}{5!}
5!x4
x
4
2
π
4
(
[
∑
n
=
1
∞
1
n
2
+
∑
n
=
1
∞
1
(
2
n
)
2
+
⋯
+
∑
n
=
1
∞
1
(
n
×
n
)
2
−
(
1
+
1
(
2
×
2
)
2
+
1
(
3
×
3
)
2
+
⋯
)
]
)
\frac{x^4}{2\pi ^4}([\sum_{n=1}^{\infty}\frac{1}{n^2}+\sum_{n=1}^{\infty}\frac{1}{(2n)^2}+\cdots +\sum_{n=1}^{\infty}\frac{1}{(n\times n)^2}-(1+\frac{1}{(2\times 2)^2}+\frac{1}{(3\times 3)^2}+\cdots)])
2π4x4([n=1∑∞n21+n=1∑∞(2n)21+⋯+n=1∑∞(n×n)21−(1+(2×2)21+(3×3)21+⋯)])
x
4
5
!
=
ζ
(
2
)
2
−
ζ
(
4
)
2
π
4
x
4
\frac{x^{4}}{5!}=\frac{{\zeta}(2)^{2}-\zeta(4)}{2\pi^{4}}x^{4}
5!x4=2π4ζ(2)2−ζ(4)x4
ζ
(
4
)
=
π
4
90
\zeta (4)=\frac{{\pi}^{4}}{90}
ζ(4)=90π4
ζ
(
2
)
=
1
1
2
+
1
2
2
+
1
3
2
+
⋯
=
π
2
6
\zeta (2) = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{{\pi}^2}{6}
ζ(2)=121+221+321+⋯=6π2
ζ
(
4
)
=
1
1
4
+
1
2
4
+
1
3
4
+
⋯
=
π
4
90
\zeta (4) = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots = \frac{{\pi}^4}{90}
ζ(4)=141+241+341+⋯=90π4
ζ
(
6
)
=
1
1
6
+
1
2
6
+
1
3
6
+
⋯
=
π
6
945
\zeta (6) = \frac{1}{1^6} + \frac{1}{2^6} + \frac{1}{3^6} + \cdots = \frac{{\pi}^6}{945}
ζ(6)=161+261+361+⋯=945π6
ζ
(
8
)
=
1
1
8
+
1
2
8
+
1
3
8
+
⋯
=
π
8
9450
\zeta (8) = \frac{1}{1^8} + \frac{1}{2^8} + \frac{1}{3^8} + \cdots = \frac{{\pi}^8}{9450}
ζ(8)=181+281+381+⋯=9450π8
构造傅里叶级数求解该无穷级数
f
(
x
)
=
x
2
,
x
∈
[
−
π
,
π
]
f(x) = x^2,x ∈ [-π, π]
f(x)=x2,x∈[−π,π]
对其进行周期延拓
由周期为两个圆周率上的傅里叶级数
f(x) =
a
0
2
\frac{a_0}{2}
2a0 +
∑
n
=
1
∞
a
n
cos
n
x
+
b
n
sin
n
x
\sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx
∑n=1∞ancosnx+bnsinnx
傅里叶级数是一种数学工具,用于将周期性函数表示为一系列正弦和余弦函数的无穷级数。这种表示形式允许我们将复杂的周期函数分解成简单的振荡成分,这些成分的频率是整数倍的关系。傅里叶级数在信号处理、振动分析、热传导等领域中有着广泛的应用。
傅里叶级数的基本思想是将一个周期函数 f(x) 展开为如下形式的级数:
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ( 2 π n x P ) + b n sin ( 2 π n x P ) ) f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{2\pi n x}{P}\right) + b_n \sin\left(\frac{2\pi n x}{P}\right) \right) f(x)=2a0+n=1∑∞(ancos(P2πnx)+bnsin(P2πnx))
其中:
P
是函数的周期。
a
0
,
a
n
,
b
n
是傅里叶系数,它们可以通过积分计算得到:
P 是函数的周期。 a_0, a_n, b_n 是傅里叶系数,它们可以通过积分计算得到:
P是函数的周期。a0,an,bn是傅里叶系数,它们可以通过积分计算得到:
a
0
=
2
P
∫
−
P
2
P
2
f
(
x
)
d
x
a_0 = \frac{2}{P} \int_{-\frac{P}{2}}^{\frac{P}{2}} f(x) \, dx
a0=P2∫−2P2Pf(x)dx
a
n
=
2
P
∫
−
P
2
P
2
f
(
x
)
cos
(
2
π
n
x
P
)
d
x
a_n = \frac{2}{P} \int_{-\frac{P}{2}}^{\frac{P}{2}} f(x) \cos\left(\frac{2\pi n x}{P}\right) \, dx
an=P2∫−2P2Pf(x)cos(P2πnx)dx
b
n
=
2
P
∫
−
P
2
P
2
f
(
x
)
sin
(
2
π
n
x
P
)
d
x
b_n = \frac{2}{P} \int_{-\frac{P}{2}}^{\frac{P}{2}} f(x) \sin\left(\frac{2\pi n x}{P}\right) \, dx
bn=P2∫−2P2Pf(x)sin(P2πnx)dx
傅里叶级数提供了一种分析函数在不同频率上的行为的方法,这对于理解复杂波形的性质非常有用。通过调整级数中的项数,我们可以控制近似的精度,从而更好地理解和处理信号。
a 0 = 2 π ∫ 0 π x 2 d x = 2 π 2 3 a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2\pi^2}{3} a0=π2∫0πx2dx=32π2
a n = 2 π ∫ 0 π f ( x ) cos n x d x a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos n x dx an=π2∫0πf(x)cosnxdx
= 2 π ∫ 0 π x 2 cos n x d x = \frac{2}{\pi} \int_0^{\pi} x^2 \cos n x dx =π2∫0πx2cosnxdx
=
4
n
2
(
−
1
)
n
= \frac{4}{n^2}(-1)^n
=n24(−1)n
b
n
=
0
b_n=0
bn=0
f ( x ) = x 2 = π 2 3 + 4 ∑ n = 1 ∞ ( − 1 ) n n 2 cos n x f(x) = x^2 = \frac{{\pi}^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos n x f(x)=x2=3π2+4n=1∑∞n2(−1)ncosnx
x = π , cos n x = cos n π = ( − 1 ) n x = \pi, \cos nx = \cos n\pi = (-1)^n x=π,cosnx=cosnπ=(−1)n
∑ n = 1 ∞ 1 n 2 = π 2 6 \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{{\pi}^2}{6} n=1∑∞n21=6π2