黎曼的zeta函数(2)

本篇是黎曼 ζ \zeta ζ函数系列的第三篇,传送门在此书接上回,让我们继续出发。

J ( x ) J(x) J(x)的计算

上回说到, J ( x ) J(x) J(x)经过一次分部积分后的结果为
J ( x ) = − 1 2 π i 1 ln ⁡ x ∫ a − i ∞ a + i ∞ x z d ln ⁡ ζ ( z ) z J(x) = -\frac{1}{2\pi i}\frac{1}{\ln x}\int_{a - i\infty}^{a + i\infty}x^zd\frac{\ln\zeta(z)}{z} J(x)=2πi1lnx1aia+ixzdzlnζ(z)
其中
ln ⁡ ζ ( s ) = ln ⁡ ξ ( 0 ) + ∑ ρ ln ⁡ ( 1 − s ρ ) − ln ⁡ Γ ( s 2 + 1 ) + s 2 ln ⁡ π − ln ⁡ ( s − 1 ) \ln\zeta(s) = \ln\xi(0) + \sum_\rho\ln(1 - \frac{s}{\rho}) - \ln\Gamma(\frac{s}{2} + 1) + \frac{s}{2}\ln\pi - \ln(s -1) lnζ(s)=lnξ(0)+ρln(1ρs)lnΓ(2s+1)+2slnπln(s1)
黎曼注意到除 ln ⁡ ξ ( 0 ) \ln\xi(0) lnξ(0)外,其余项均可表达为类似
F ( β ) = 1 2 π i 1 ln ⁡ x ∫ a − i ∞ a + i ∞ x s d ln ⁡ ( s β − 1 ) s F(\beta) = \frac{1}{2\pi i}\frac{1}{\ln x}\int_{a - i\infty}^{a + i\infty}x^sd\frac{\ln(\frac{s}{\beta} - 1)}{s} F(β)=2πi1lnx1aia+ixsdsln(βs1)
的形式,例如 F ( 1 ) F(1) F(1)对应 ln ⁡ ( s − 1 ) \ln(s - 1) ln(s1)。现在的技巧是我们先求 F ′ ( β ) F'(\beta) F(β),这给出
F ′ ( β ) = 1 2 π i 1 ln ⁡ x ∫ a − i ∞ a + i ∞ x s d 1 ( β − s ) β F'(\beta) = \frac{1}{2\pi i}\frac{1}{\ln x}\int_{a - i\infty}^{a + i\infty}x^sd\frac{1}{(\beta - s)\beta} F(β)=2πi1lnx1aia+ixsd(βs)β1
我们像上面一样如法炮制,做一次分部积分就得到
β F ′ ( β ) = − 1 2 π i ∫ a − i ∞ a + i ∞ x s β − s d s \beta F'(\beta) = -\frac{1}{2\pi i}\int_{a - i\infty}^{a + i\infty}\frac{x^s}{\beta - s}ds βF(β)=2πi1aia+iβsxsds
z = − s z = -s z=s,可以看出上式是一个Mellin逆变换的表达式,做逆变换的函数是
φ ( z ) = − 1 β + z \varphi(z) = -\frac{1}{\beta + z} φ(z)=β+z1
注意到
− 1 β + z = ∫ 1 ∞ x z − 1 x β d x -\frac{1}{\beta + z} = \int_1^\infty x^{z - 1}x^\beta dx β+z1=1xz1xβdx
是对应的Mellin变换,就有
F ′ ( β ) = x β β F'(\beta) = \frac{x^\beta}{\beta} F(β)=βxβ
如果 ℜ ( β ) < 0 \Re(\beta) < 0 (β)<0,就有
F ′ ( β ) = ∫ ∞ x x β − 1 d x ,   F ( β ) = ∫ ∞ x x β − 1 ln ⁡ x d x + C F'(\beta) = \int_\infty^x x^{\beta - 1}dx, ~ F(\beta) = \int_\infty^x \frac{x^{\beta - 1}}{\ln x}dx + C F(β)=xxβ1dx, F(β)=xlnxxβ1dx+C
ℜ ( β ) > 0 \Re(\beta) > 0 (β)>0则有
F ′ ( β ) = ∫ 0 x x β − 1 d x ,   F ( β ) = ∫ 0 x x β − 1 ln ⁡ x d x + C F'(\beta) = \int_0^x x^{\beta - 1}dx, ~ F(\beta) = \int_0^x \frac{x^{\beta - 1}}{\ln x}dx + C F(β)=0xxβ1dx, F(β)=0xlnxxβ1dx+

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要了解黎曼 zeta 函数的定义: $$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}$$ 其中,$s$ 是一个复数。当 $s$ 的实部大于 $1$ 时,黎曼 zeta 函数是收敛的。当 $s=1$ 时,黎曼 zeta 函数的值为无穷大。 黎曼 zeta 函数的一个重要性质是,它可以被解析延拓到整个复平面,除了 $s=1$ 这个点存在一个极点。具体来说,黎曼 zeta 函数可以被写成以下形式: $$\zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^x-1}\mathrm{d}x$$ 其中,$\Gamma(s)$ 是欧拉伽玛函数。 接下来,我们来证明素数的频率与黎曼 zeta 函数的零点相关。为此,我们需要引入另一个函数 $\psi(x)$,它被定义为: $$\psi(x)=\sum_{n\leq x}\Lambda(n)$$ 其中,$\Lambda(n)$ 表示 n 的 von Mangoldt 函数,即: $$\Lambda(n)=\begin{cases}\ln p, & \text{if }n=p^k\text{ for some prime }p\text{ and integer }k\geq 1\\0, & \text{otherwise}\end{cases}$$ 通过分部积分,可以得到: $$\psi(x)=x-\sum_{\rho}\frac{x^{\rho}}{\rho}-\ln 2\pi-\frac{1}{2}\ln(1-x^{-2})$$ 其中,$\rho$ 是黎曼 zeta 函数的零点。 接下来,我们需要证明的是,当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 其中,“$\sim$”表示“渐进等于”。 这个结论可以通过黎曼-底格尔公式得到。黎曼-底格尔公式是一个重要的数学公式,它描述了黎曼 zeta 函数与素数分布之间的关系。具体来说,黎曼-底格尔公式可以写成以下形式: $$\pi(x)=\text{li}(x)+O\left(\frac{x}{\ln x}\right)$$ 其中,$\text{li}(x)$ 是对数积分函数,$O\left(\frac{x}{\ln x}\right)$ 是渐进符号,表示当 $x$ 趋近于正无穷时,剩余的误差可以被一个与 $\frac{x}{\ln x}$ 同阶的函数所控制。 我们可以对黎曼-底格尔公式进行微调,得到: $$\psi(x)=\text{li}(x)-\sum_{p}\text{li}(x^{1/p})-\ln 2-\frac{1}{2}\ln(1-x^{-2})+O\left(\frac{x}{\ln x}\right)$$ 其中,$p$ 是素数。这个公式的证明可以参考数论中的相关文献。 接下来,我们证明当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 我们可以先证明当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是比较小的。具体来说,根据定义,$\text{li}(x)$ 可以写成以下积分的形式: $$\text{li}(x)=\int_{2}^{x}\frac{\mathrm{d}t}{\ln t}$$ 通过分部积分,可以得到: $$\text{li}(x)=\frac{x}{\ln x}-\int_{2}^{x}\frac{\mathrm{d}t}{\ln^2 t}+\frac{2}{\ln 2}$$ 因此,当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。 接下来,我们证明当 $x$ 趋近于正无穷时,$\sum_{p}\text{li}(x^{1/p})$ 与 $x$ 的差距也是比较小的。具体来说,我们可以写出: $$\sum_{p}\text{li}(x^{1/p})\leq\sum_{n}\text{li}(x^{1/n})=\sum_{n}\int_{2}^{x^{1/n}}\frac{\mathrm{d}t}{\ln t}=\sum_{n}\frac{x^{1/n}}{n\ln x}=O\left(\frac{x}{\ln x}\right)$$ 其中,第一个等式是因为 $\text{li}(x^{1/n})$ 可以看成是 $\text{li}(y)$,其中 $y$ 是满足 $y^n=x$ 的最小整数;第二个等式是通过换元积分得到的;第三个等式是通过级数展开得到的。 因此,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。这意味着,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 是同阶的,即: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 因此,我们证明了素数的频率与黎曼 zeta 函数的零点分布相关的结论。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值