(关键点检测)YOLOv8实现多类人体姿态估计的输出格式分析

(关键点检测)YOLOv8实现多类人体姿态估计的输出格式分析

1. 任务分析

判断人体关键点时一并给出关键点所属的类别,比如男人,女人。
示例

2. 所使用的数据配置文件

添加类别:0: male,1: female。

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)

# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]

# Classes
names:
  0: male
  1: female

3. 网络结构

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  
### 使用YOLOv5进行人体骨骼关键点检测 为了利用YOLOv5实现人体骨骼关键点检测,通常需要结合额外的人体姿态估计工具来完成这一任务。具体来说,YOLOv5主要用于目标检测部分,即定位图像中的人员位置;而人体姿态估计则由专门的姿态估计算法负责。 #### 封装YOLOv5检测类 创建一个Python类`YoloV5Detector`用于封装YOLOv5的目标检测功能。此类不仅提高了代码的可读性和维护性,还便于将其集成到更大的应用程序框架中[^3]。 ```python import torch class YoloV5Detector: def __init__(self, weights_path='yolov5s.pt', device='cuda'): self.model = torch.hub.load('ultralytics/yolov5', 'custom', path=weights_path).to(device) def detect(self, img): results = self.model(img) return results.pandas().xyxy[0] ``` 此段代码定义了一个简单的接口,允许调用者通过提供图片路径获取YOLOv5预测的结果。这些结果包含了边界框坐标以及类别标签等信息。 #### 结合OpenPose进行姿态估计 一旦获得了人物的位置信息,下一步就是应用像OpenPose这样的库来进行更细致的身体部位识别工作。这一步骤涉及加载预训练好的OpenPose模型并处理来自YOLOv5输出的人物裁剪区域作为输入[^2]。 ```python from openpose import pyopenpose as op def initialize_open_pose(): params = dict() params["model_folder"] = "./models/" opWrapper = op.WrapperPython() opWrapper.configure(params) opWrapper.start() return opWrapper op_wrapper = initialize_open_pose() def estimate_pose(image, bbox): datum = op.Datum() cropped_image = image[bbox['top']:bbox['bottom'], bbox['left']:bbox['right']] datum.cvInputData = cropped_image op_wrapper.emplaceAndPop([datum]) keypoints = datum.poseKeypoints return keypoints ``` 上述函数展示了如何初始化OpenPose环境,并针对单个人物实例执行姿态估计操作。最终返回的是该个体各个关节处的关键点集合。 #### 整合流程 最后,将这两个组件结合起来形成完整的解决方案: 1. 对于每一帧视频或静态照片,先使用`YoloV5Detector.detect()`找到所有人形对象; 2. 针对每一个检测出来的矩形框,提取对应的子图传递给`estimate_pose()`得到详细的姿势描述; 3. 后续可以根据实际需求进一步分析这些数据,比如判断是否存在跌倒动作或其他特定的行为模式。 这种方法充分利用了YOLOv5快速准确的对象检测能力和OpenPose强大的姿态解析能力,从而实现了高效且精确的人体骨骼关键点检测方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值