Combinatorics——HDUOJ 1294 - Rooted Trees Problem(DFS整数拆分+DP+多重集合组合)

原题

  • Problem Description

    Give you two definitions tree and rooted tree. An undirected connected graph without cycles is called a tree. A tree is called rooted if it has a distinguished vertex r called the root. Your task is to make a program to calculate the number of rooted trees with n vertices denoted as Tn. The case n=5 is shown in Fig. 1.这里写图片描述

  • Input

    There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer means n(1<=n<=40) .

  • Output

    For each test case, there is only one integer means Tn.

  • Sample Input

    1
    2
    5

  • Sample Output

    1
    1
    9

对与dfs,记忆化dfs,动态规划,可参考:http://blog.sina.com.cn/s/blog_8eac84090102vt0y.html(讲的很棒)
对于多重集合组合,可参考:http://blog.csdn.net/Ming991301630/article/details/78451710
对于整数拆分,可参考:http://blog.csdn.net/Ming991301630/article/details/78468953

解题思路:
  • 此题做法有点类似分治法,对于n个节点有几种不同的树,可看作是根节点有1~n-1个子节点中每个节点的树种类的相加,有点类似与整数拆分:
    • 例如:5个节点的树,可能拥有1~4个子节点,即根节点之下一共用4个节点(除了根节点的所有节点肯定在根节点下面:子节点+孙节点+…)。
    • 那么4个节点怎么排列呢,就可以看作 4 = 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1
    • 即:根节点之下,可以只有一个节点(该节点包括子孙节点有4个),或者两个节点左节点包括子孙节点有3个,右节点包括子孙节点有1个,或者三个节点,或者四个节点。【其他以此类推】
    • 所以要求出5个节点有几种树:f(5) = f(4) + f(3)*f(1) + f(2)*C(f(1)+2-1,1) + C(f(1)+4-1,1)
  • 之所以用到多重集合的组合数公式C(n+k-1,k),是因为当一个节点之下拥有多个-相同个数子孙节点-的子节点时,如果直接相乘,则会出现重复现象。
    使用组合数公式,可以理解为:
    • 例如:f(11)有两个子节点,分别是f(5)和f(5),f(5) = 9(即5个节点有9种树),若想要从这9种树中随机选两种(每种树可以选多次),那能够选择的结果种类个数就是C(9 + 2 - 1, 2)。【多重集合的组合数】
  • 以下代码从1到40,使用的是dfs求出一个整数的不同种类的拆分数,然后逐个求出各个节点的树的种类。从1到40逐个算,后面的可以直接用前面算好的结果(动态规划)
  • 需要注意的是:算n个节点的树的种类,相当于对n-1进行dfs整数拆分,因为根节点不参与运算

代码:

#include<stdio.h>
#include <algorithm>
long long sum[41] = { 0 };
long long temp;
short top, total, now, n;//栈顶指针//dfs函数用于判断总是是否符合要求//要算的数//要算的数减去1(根节点)
short stack[41];//用于保存整数拆分后的结果
long long  C(long long n, long long m)//求组合数  
{
    m = std::min(m, n - m);
    long long i, s = 1;
    for (i = 1;i <= m;i++)
        s = s*(n - i + 1) / i;
    return s;
}
void dfs(short index)
{
    short i;
    short Repnum = 0, Reptime = 1;//重复的数和重复的次数
    if (total == n)//满足
    {
        temp = 1;
        for (i = 0; i <= top - 1; i++)
        {
            if(i != top - 1 && stack[i] == stack[i+1])//i不是最后一个&&这一个与下一个相同
            {
                Repnum = stack[i];
                Reptime++;
                if(i + 1 == top - 1)//当下一个就是最后一个的时候
                {
                    temp *= C(sum[Repnum] + Reptime - 1, Reptime);
                    Reptime = 1;
                    Repnum = 0;
                    break;
                }
            }else if(Repnum != 0)
            {
                temp *= C(sum[Repnum] + Reptime - 1, Reptime);
                Reptime = 1;
                Repnum = 0;
            }
            else
            {
                temp *= sum[stack[i]];//栈中的数提取出来
            }       
        }
        sum[now] += temp;
    }
    if (total > n)return;
    if (total < n)
    {
        for (i = index; i >= 1; i--)
        {
            total += i;
            stack[top++] = i;
            dfs(i);
            total -= i;
            top--;
        }
    }
}
int main()
{
    short i, a;
    sum[1] = sum[2] = 1;
    sum[3] = 2; sum[4] = 4;
    for (i = 5; i <= 40; i++)
    {
        top = total = 0; 
        now = i;
        n = i - 1;
        dfs(i - 1);
    }
    while (scanf("%d",&a)!=EOF)
    {
        printf("%lld\n", sum[a]);
    }
}

附加:

//排列组合可直接用的代码:
void A(int n,int m)
{
    int i;
    for (i = n; i > n - m; i--)
    {
        sum *= i;
    }
}
void C(int n, int m)
{
    int i;
    m = min(m, n - m);
    for (i = 1; i <= m; i++)
    {
        sum = (sum *(n - i + 1)) / i;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值