七自由度模型搭建与仿真

返回总目录

 如上图所示的独立悬架7自由度整车模型,假定车身是一个刚体,车辆在水平面上做匀速直线运动,车身具有上下跳动、俯仰和侧倾三个自由度,四个车轮各自都有一个上下跳动的自由度,加起来总共有7个自由度,所以称为简化的7自由度悬架振动模型。

图中参数说明:
Bf,Br:前轴轮距,后轴轮距
KtA,KtB,KtC,KtD :前后左右四个轮胎刚度
ZgA,ZgB,ZgC,ZgD:前后左右四个轮胎处路面激励
ZwA,ZwB,ZwC,ZwD:前后左右四个车轮质心位移
CsA,CsB,CsC,CsD: 前后左右减振器阻尼系数
KsA,KsB,KsC,KsD:前后左右弹簧刚度
ZbA,ZbB,ZbC,ZbD:前后左右四个角落车身位移
θb:车身俯仰角度
\varphi:车身侧倾角度
zb:车身质心上下运动位移
a,b:质心到前轴和后轴距离

在CDC控制中,建立7自由度悬架模型主要目的还是:
1、分析粗糙路上质心振动加速度优化情况;
2、整车行驶车身姿态运动控制(俯仰、侧倾);
3、过减速带工况;

假设车身是刚体,质心运动Zb,θb和\varphi数值都较小,从几何关系,可以得到车身四个角落簧上位移如下:

 车身质心处垂向运动方程为:

 车身俯仰运动方程为:

 车身侧倾运动方程为:

 四个非簧载质量(簧下质量)运动方程:

从以上五组方程,便可以搭建出悬架仿真7自由度模型,下面打开simulink,开始搭模型:
1、有二阶微分的,二话不说,先摆上两个积分器,并标注好名称,然后根据解析式,一个一个把它们接起来:

 2、搭第一组方程,四个角落的位移,输出都已经有了。
      考虑到簧上位移的微分,别处也有用,顺便搭出来。

3、 接着,可以搭zb两点的求解,就可以跟第一步的zb两点连起来了。

 4、搭建第三组,俯仰运动方程.
      

 5、搭第四组方程,侧倾运动,第4步和第5步很多是可以从第三步复制过来的。

 6、搭最后一组方程.

7、按照先后顺序,整理下这几个模块,取缔掉一些goto,信号合并为总线输出的形式,稍作整理。输入为随机路面,随机路面的生成前几个文章有讲过。 

8、设置车辆参数:

 mb=1380; %车身质量kg
 Ip=2440; %俯仰转动惯量 kg.m2
 Ir=380;  %侧倾转动惯量 kg.m2
 Bf=1.48; %前轴轮距
 Br=1.48;%后轴轮距
 KtA=192; %KN/m  左前轮胎刚度
 KtB=192; %KN/m  右前轮胎刚度
 KtC=192; %KN/m  左后轮胎刚度
 KtD=192; %KN/m  右后轮胎刚度
 KsA=17; %KN/m  左前弹簧刚度
 KsB=17; %KN/m  右前弹簧刚度
 KsC=17; %KN/m  左后弹簧刚度
 KsD=17; %KN/m  右后弹簧刚度
 CsA=1.5; %KN.s/m  左前减振器阻尼
 CsB=1.5; %KN.s/m  右前减振器阻尼
 CsC=1.5; %KN.s/m  左后减振器阻尼
 CsD=1.5; %KN.s/m  右后减振器阻尼
 a=1.25;% m 质心到前轴距离
 b=1.51;%m质心到后轴距离
 m_wa=40.5;%左前簧下质量
 m_wb=40.5;%右前簧下质量
 m_wc=45.4;%左后簧下质量
 m_wd=45.4;%右后簧下质量

运行仿真,查看结果。

质心加速度

### 关于七自由度整车悬架模型的推导 车辆动力学建模中,7DOF(Seven Degrees of Freedom)模型考虑了车身垂直位移、俯仰角、侧倾角以及四个车轮各自的垂直运动。此模型能够更精确地描述汽车行驶过程中的动态特性。 #### 车身坐标系定义 为了建立7DOF模型方程,在惯性参考框架下设定原点位于未受扰动时质心位置处,并沿纵向方向取x轴向前,横向y轴向左,竖直z轴向上形成右手笛卡尔坐标系[^1]。 #### 动力学方程构建 对于整个系统的质量矩阵M和广义力矢量Q可以表示如下: \[ M\ddot{q} + C\dot{q} + Kq = Q \] 其中\( q=[z_b,\theta_p,\theta_r,z_{fl},z_{fr},z_{rl},z_{rr}]^T \),分别代表车身高度变化、俯仰角度偏转、横摆倾斜程度还有前后左右四轮胎相对地面跳动幅度;C为阻尼系数矩阵而K则是刚度参数构成之阵列形式[^2]。 具体到各部分表达式有: - **车身加速度项** ```matlab Mb * zb''(t) % Mb 表示车身总重 ``` - **前桥簧上质量加速分量** ```matlab Iyy * theta_p''(t)% Iyy 是绕Y轴转动惯量 ``` - **后桥簧上质量加速分量** ```matlab Ixx * theta_r''(t)% Ixx 对应X轴旋转惯性的矩 ``` - **单个车轮上的作用力** 针对每一个独立悬挂单元而言,其受到来自路面激励输入w(t),弹簧k减振器c共同影响下的响应可由二阶线性微分方程式来刻画: \[ m_w z_i''(t)+ c(z_i'(t)- w'(t))+ k (z_i-w)=0,i∈\{fl, fr, rl , rr\}\] 这里\(m_w\)指的是无负载状态下单独一轮的质量[^3]。 通过上述分析可以看出,要完成完整的7DOF车辆悬架系统数学模型还需要进一步确定各个物理属性的具体数值并结合实际应用场景做适当调整优化。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极简车辆控制

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值