概率论-2.1 随机变量及其分布(重点:右连续的来源)

随机变量意义:用数字化形式表示随机现象结果
随机变量本质:定义在样本空间上的实值函数X=X(w),w为空本空间上的样本点(x不一定是数字型,但随机变量X一定是数字型)
数字型随机变量:事件结果为数字
数字型随机变量:事件结果为非数字(例:对产品是否合格的检验)
离散型随机变量:有限或可列
连续性随机变量:充满某一区间或不可数
区别于微积分,概率论中的变量取值随机且服从某一分布
分布函数:
随机变量X属于[负无穷 正无穷],设x为任一常数,称F(x)=P(X<=x)为X的分布函数,记作X~F(x)
分布函数基本性质
单调性:对任意x1<x2,都有F(x1)<=F(x2)
有界性:0<=F(x)<=1
右连续性:对任意x0都有,lim(x->x0+0) F(x)=F(x0)
单调性证明
设x1<x2,都有F(x2)-F(x1)=P(x1<X<=x2),由概率的非负性可知P>=0恒成立
于是有F(x2)-F(x1)=P(x1<X<=x2)>=0,F(x2)-F(x1)
有界性证明
F(x)=P(负无穷<X<=x),P与F象的集合相等,而0<=P<=1,于是有0<=F(x)<=1
有以上两条可知,分布函数是在R上单调非减且值域为[0, 1]的函数
右连续证法一
设有x1 >x2>x3>xn>…>x0,F(x1)-F(x0)=P(x0<X<=x1)=P(U x(i+1)<X<=xi),i为1,2,…,n…
P(U x(i+1)<X<=xi)= U P(x(i+1)<X<=xi)=lim(i->正无穷) (F(xi)-F(x(i+1))(可列转换极限)
lim(i->正无穷) (F(xi)-F(x(i+1))= lim(i->正无穷) (F(x1)-F(x(i))
lim(i->正无穷) (F(x1)-F(x(i+1))= F(x1)-lim(i->正无穷) F(x(i+1)
lim(i->正无穷) F(x(i+1)= lim(n->正无穷) F(xn)(由假设可得)
综上
F(x1)-F(x0)= F(x1)-lim(n->正无穷) F(xn)
F(x0)=lim(n->正无穷) F(xn)
右连续证法二
设有x1>x2,则有F(x2)-F(x1)=P(x1<X<=x2)
lim(x2->x1+0) F(x2)-F(x1)= lim(x2->x1+0) P(x1<X<=x2)
上式x2取到的是x1的右极限,而P(x1<X<=x2)的右端取到的也是x1的右极限
于是此时lim(x2->x1+0) P(x1<X<=x2)的区间长度为0
推出lim(x2->x1+0) P(x1<X<=x2)=0
(核心:P左端取的是x1的极限,右端取的也是x1的极限,随机变量取值区间长度为0,于是有P=0)
离散随机变量的概率分布:
设X为一个离散随机变量,X的所有可能取值是x1,x2,…,xn,…,则称X取xi的概率 pi=p(xi)=P(X=xi),i=1,2,…,n,…为X的概率分布列,记为X~{pi}

离散随机变量分布列满足性质:非负性,正则性,右连续
离散随机变量分布函数:F(xn)=Sum(P(xi)),i从1到n
单点分布(退化分布):

连续随机变量的概率分布(概率密度函数)与其分布函数
设随机变量X的概率密度函数为f(x)
则X=x1的概率为P(X=x1)=f(x1)*dx
X在x1到x2之间的概率为P(x1<X<X2)=Sum(P(xi))=积分符f(x)dx,x属于(x1, x2)
F(x2)-F(x1)=P(x1<X<X2)=积分符f(x)dx,x属于(x1, x2)
x1趋于负无穷时
F(x2)=P(X<X2)=积分符f(x)dx,x属于(负无穷, x2)
分布函数满足的基本性质:单调性,正则性,连续性(左右连续)
(补充:分布函数左右连续的证明)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值