Lyapunov稳定在线性定常系统的特征值判据

  我们知道对于一个线性定常系统\dot{x}=Ax,其平衡点有且仅有x_{e}=0。那么回顾Lyapunov第一法的内容,当存在一个x_{e}\delta邻域使得从该邻域出发的任意x_{0}\lim\limits_{t\rightarrow \infty }x_{0}=x_{e}=0,我们称该系统为渐进稳定的。接下来我们可以直接从矩阵A出发,通过其特征值来直接判定该系统是否为渐进稳定的。更进一步,我们可以判定该系统是否为大范围渐进稳定的。

    对于矩阵A,其特征值分布有两种情况:

1、特征值为互不相等的根

2、特征值具有k次重根

无论是情况1还是情况2,矩阵A都可以变换为约旦标准阵。一般而言我们称情况1可以变换为对角阵,情况2可以变换为包含约旦块的约旦标准阵:

1、

        T^{-1}AT=\begin{bmatrix} \lambda_{1} & & \\ & \lambda_{2} & \\ & & \ddots\\ & & & \lambda_{n} \end{bmatrix} \tag{1}

2、

T^{-1}AT=\begin{bmatrix} J_{1} & & &\\ & J_{2} & &\\ & & \ddots &\\ & & & J_{n}\\ \end{bmatrix}\tag{2}

其中,假设A有q个重根\lambda_{1}p个重根\lambda_{2},那么约旦块J_{1},J_{2}有:

J_{1}=\begin{bmatrix} \lambda_{1} &1 & &\\ & \lambda_{1} &1 &\\ & & \ddots &\ddots \\ & & & \ddots &1\\ & & & & \lambda_{1} \end{bmatrix}_{q\times q}

J_{2}=\begin{bmatrix} \lambda_{2} &1 & &\\ & \lambda_{2} &1 &\\ & & \ddots &\ddots \\ & & & \ddots &1\\ & & & & \lambda_{2} \end{bmatrix}_{p\times p}

剩余的约旦块均为对角阵。

  接下来我们从线性定常系统的一般解出发,利用矩阵A可转换为约旦标准阵的特点,将矩阵A的特征值与Lyapunov稳定联系起来。

首先我们知道线性定常系统的解为

x(t)=e^{At}x_{0}\tag{3}

那么当A对应不同的特征值分布时,可以得到对应特征值互异的情况及特征值有重根的情况下e^{At}的表达式:

1、特征值互异时:

由式4和式5出发

e^{At}=I+At+\frac{1}{2!}(At)^{2}+\cdots+\frac{1}{n!}(At)^n\tag{4}

A=T\Lambda T^{-1}\tag{5}

我们可以得到式6。其中,\Lambda为对角阵。

e^{At}=I+T\Lambda tT^{-1}+\frac{1}{2}T(\Lambda t)^{2}T^{-1}+\cdots+\frac{1}{n}T(\Lambda t)^{n}T^{-1}\tag{6}

而式6又可以等价为式7

e^{At}=T\begin{bmatrix} e^{\lambda_{1}t} & & &\\ & e^{\lambda_{2}t} & &\\ & & \ddots &\\ & & & e^{\lambda_{n}t} \end{bmatrix}T^{-1}\tag{7}

对于式7中任意一e^{\lambda_{i}t},当\lambda_{i}=a+bjRe(\lambda)<0 时,注意到无穷小与有界量仍是无穷小,我们有式8

\lim\limits_{t\rightarrow\infty}e^{\lambda_{i}t}=\lim\limits_{t\rightarrow\infty}e^{at}\cdot (\cos bt+j\sin bt)=0\tag{8}

所以此时我们可以推出,任取状态空间的一个初始状态x_{0},其总有

\lim\limits_{t\rightarrow\infty}e^{At}x_{0}=x_{e}=\boldsymbol{0}

这时我们称此系统为渐近稳定的,其实由于初始状态的选取是任意的,我们也称此系统为大范围渐近稳定的(注意这里是零向量,而不是零)。

2、特征值具有重根时

  由式2可以得到

A=TJT^{-1}\tag{9}

从式4以及式9出发,我们可以得到式10

e^{At}=T\begin{bmatrix} e^{J_{1}t} & & &\\ & e^{J_{2}t} & &\\ & & \ddots &\\ & & & e^{J_{n}t} \end{bmatrix}T^{-1}\tag{10}对应A有q个重根做相似变换得到的约旦块J_{1}的形式在前面已给出,我们现在更关心e^{J_{1}t}的形式。那么这里直接给出证明后的结论(有时间我会单独再写一篇关于这一步的证明过程)

e^{J_{1}t}=e^{\lambda_{1}t}\begin{bmatrix} 1 &t &\frac{1}{2!}t^{2} &\cdots &\frac{1}{(n-1)!}t^{n-1}\\ 0 &1 &t &\cdots &\frac{1}{(n-2)!}t^{n-2}\\ \vdots &\vdots &\vdots &\ddots &\vdots\\ 0 &0 &0 &\cdots &t\\ 0 &0 &0 &\cdots &1\\ \end{bmatrix}\tag{11}

观察上式,我们发现当Re(\lambda_{1})<0时,对于\forall k\in n-1有式12成立

\lim\limits_{t\rightarrow\infty}e^{\lambda_{1}t}\cdot\frac{1}{k!}t^{k}=0\tag{12}

这是因为,不妨令\lambda_{1}=a+bj,则根据泰勒展开,有

e^{\lambda_{1}t}\cdot\frac{1}{k!}t^{k}=\frac{t^{k}}{e^{-\lambda_{1}t}k!}=\frac{1}{k!}\frac{t^{k}}{1-at+a^{2}t^{2}+\cdots+(-a)^{n}t^{n}}e^{bj}\tag{13}

所以我们可以通过式14

\lim\limits_{t \rightarrow\infty}\frac{1}{k!}\frac{t^{k}}{1-at+a^{2}t^{2}+\cdots+(-a)^{n}t^{n}}=\lim\limits_{t\rightarrow\infty}\frac{1}{k!}\frac{1}{t^{-k}-at^{1-k}+\cdots+(-a)^{k}+\cdots+(-a)^{n}t^{n-k}}=0\tag{14}

以及根据无穷小与有界量的乘积仍为无穷小(已经反复提到了),可以得到

\lim\limits_{t\rightarrow\infty}\frac{1}{k!}\frac{t^{k}}{1-at+a^{2}t^{2}+\cdots+(-a)^{n}t^{n}}e^{bj}=0\tag{15}

读者也可以尝试利用洛必达法则证明式12等于0。从上面的证明我们可以得出结论:

\lim\limits_{t\rightarrow\infty}e^{J_{1}t}=\boldsymbol{0}

对于其他具有重根的特征值变换为的约旦块上式同样成立,而对于剩下特征值互异变换为的约旦块在情况1中我们也证明过上式成立。因此由式10我们可以得出

\lim\limits_{t\rightarrow\infty}e^{At}x_{0}=x_{e}=\boldsymbol{0}

这与情况1的最终结果一样。

  综上,我们得出矩阵A的特征值具有负实部的时候,线性定常系统\dot{x}=Ax是渐近稳定的,而且是大范围渐近稳定的。

线性定常系统的特征值判据是一个非常重要的判据,利用它我们可以推出Lyapunov第二法对于线性定常系统稳定性更加一般的判据。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值