Lyapunov函数(广义能量函数)稳定性判别定理
考虑系统
x
˙
=
f
(
x
)
\dot{x}=f(x)
x˙=f(x),设
x
e
=
0
x_e=0
xe=0为一平衡点,如果存在连续可微的标量函数
V
(
x
)
V(x)
V(x)满足:
(1)
V
(
x
)
V(x)
V(x)正定
(2)
V
˙
=
∂
V
(
x
)
∂
x
f
(
x
)
\dot{V}=\frac{\partial V(x)}{\partial x}f(x)
V˙=∂x∂V(x)f(x)半负定
则系统的平衡点
x
e
=
0
x_e=0
xe=0是Lyapunov稳定的。

Lyapunov函数渐进稳定性判别定理
考虑系统
x
˙
=
f
(
x
)
\dot{x}=f(x)
x˙=f(x),设
x
e
=
0
x_e=0
xe=0为一平衡点,如果存在连续可微的标量函数
V
(
x
)
V(x)
V(x)满足:
(1)
V
(
x
)
V(x)
V(x)正定
(2)
V
˙
=
∂
V
(
x
)
∂
x
f
(
x
)
\dot{V}=\frac{\partial V(x)}{\partial x}f(x)
V˙=∂x∂V(x)f(x)半负定
(3)集合{
x
∈
R
n
∣
V
˙
(
x
)
=
0
x\in R^n|\dot{V}(x)=0
x∈Rn∣V˙(x)=0}不包括系统的除平衡点以外的状态轨迹,则系统的平衡点
x
e
=
0
x_e=0
xe=0是Lyapunov渐进稳定的。
进一步,若
V
(
x
)
V(x)
V(x)半径无穷大,则系统的平衡点
x
e
=
0
x_e=0
xe=0是Lyapunov全局渐进稳定的。
推论
考虑系统
x
˙
=
f
(
x
)
\dot{x}=f(x)
x˙=f(x),设
x
e
=
0
x_e=0
xe=0为一平衡点,如果存在连续可微的标量函数
V
(
x
)
V(x)
V(x)满足:
(1)
V
(
x
)
V(x)
V(x)正定
(2)
V
˙
=
∂
V
(
x
)
∂
x
f
(
x
)
\dot{V}=\frac{\partial V(x)}{\partial x}f(x)
V˙=∂x∂V(x)f(x)负定
则系统的平衡点
x
e
=
0
x_e=0
xe=0是Lyapunov渐进稳定的。
ps.判断稳定性是利用了线性代数中的二次型 正定矩阵等知识来定号
例题
1
求单摆在(0,0)处的稳定性

{ x 1 ˙ = x 2 x 2 ˙ = − g l s i n x 1 − k m x 2 \left\{ \begin{aligned} \dot{x_1} & = x_2\\ \dot{x_2} & = -\frac{g}{l}sinx_1-\frac{k}{m}x_2 \\ \end{aligned} \right. ⎩⎨⎧x1˙x2˙=x2=−lgsinx1−mkx2
选择V函数:
V
(
x
)
=
g
l
(
l
−
c
o
s
x
1
)
+
x
2
2
2
.
V(x)= \frac{g}{l}(l-cosx_1)+\frac{x_2^2}{2}.
V(x)=lg(l−cosx1)+2x22.
其中,
V
(
x
)
正
定
V(x)正定
V(x)正定
V
˙
(
x
)
=
g
l
s
i
n
x
1
x
˙
1
+
x
2
x
˙
2
\dot{V}(x)=\frac{g}{l}sinx_1\dot{x}_1+x_2\dot{x}_2
V˙(x)=lgsinx1x˙1+x2x˙2
将
x
˙
1
,
x
˙
2
\dot{x}_1,\dot{x}_2
x˙1,x˙2代入上式,
V
˙
(
x
)
=
−
k
m
x
2
2
半
负
定
\dot{V}(x)=-\frac{k}{m}x_2^2半负定
V˙(x)=−mkx22半负定
∴
单
摆
在
(
0
,
0
)
处
稳
定
\therefore 单摆在(0,0)处稳定
∴单摆在(0,0)处稳定
2
已知系统方程如下,用Lyapunov函数判断稳定性
{
x
1
˙
=
x
2
−
x
1
(
x
1
2
+
x
2
2
)
x
2
˙
=
−
x
1
−
x
2
(
x
1
2
+
x
2
2
)
\left\{ \begin{aligned} \dot{x_1} & = x_2-x_1(x_1^2+x_2^2)\\ \dot{x_2} & = -x_1-x_2(x_1^2+x_2^2) \\ \end{aligned} \right.
{x1˙x2˙=x2−x1(x12+x22)=−x1−x2(x12+x22)
寻找平衡点:
{
x
2
−
x
1
(
x
1
2
+
x
2
2
)
=
0
−
x
1
−
x
2
(
x
1
2
+
x
2
2
)
=
0
⇒
x
1
=
x
2
=
0
\left\{ \begin{aligned} x_2-x_1(x_1^2+x_2^2)& =0\\ -x_1-x_2(x_1^2+x_2^2) & =0 \\ \end{aligned} \right. \Rightarrow x_1=x_2=0
{x2−x1(x12+x22)−x1−x2(x12+x22)=0=0⇒x1=x2=0
选择V函数:
V
(
x
)
=
x
1
2
+
x
2
2
V(x)=x_1^2+x_2^2
V(x)=x12+x22
其中,
V
(
x
)
正
定
V(x)正定
V(x)正定
V
˙
(
x
)
=
2
x
1
x
1
˙
+
2
x
2
x
2
˙
=
−
2
(
x
1
2
+
x
2
2
)
2
负
定
\dot{V}(x)=2x_1\dot{x_1}+2x_2\dot{x_2}=-2(x_1^2+x_2^2)^2负定
V˙(x)=2x1x1˙+2x2x2˙=−2(x12+x22)2负定
∴
系
统
在
(
0
,
0
)
渐
进
稳
定
,
又
由
于
V
(
x
)
半
径
无
穷
大
,
故
该
点
全
局
渐
进
稳
定
\therefore 系统在(0,0)渐进稳定,又由于V(x)半径无穷大,故该点全局渐进稳定
∴系统在(0,0)渐进稳定,又由于V(x)半径无穷大,故该点全局渐进稳定
连续时间线性系统稳定性判别
线性时不变系统稳定判据的间接法
1
{
x
1
˙
=
x
2
x
2
˙
=
−
x
1
\left\{ \begin{aligned} \dot{x_1} & = x_2\\ \dot{x_2} & = -x_1 \\ \end{aligned} \right.
{x1˙x2˙=x2=−x1
A
=
[
0
1
−
1
0
]
⇒
d
e
t
(
λ
I
−
A
)
=
λ
2
+
1
⇒
λ
1
,
2
=
±
i
A= \left[ \begin{matrix} 0 & 1 \\ -1 & 0 \end{matrix} \right]\Rightarrow det(\lambda I-A)=\lambda ^2+1\Rightarrow \lambda _{1,2}=\pm i
A=[0−110]⇒det(λI−A)=λ2+1⇒λ1,2=±i
⇒
系
统
所
有
平
衡
点
稳
定
\Rightarrow 系统所有平衡点稳定
⇒系统所有平衡点稳定
2
{
x
1
˙
=
−
x
1
+
x
2
x
2
˙
=
−
x
1
−
x
2
\left\{ \begin{aligned} \dot{x_1} & = -x_1+x_2\\ \dot{x_2} & = -x_1-x_2 \\ \end{aligned} \right.
{x1˙x2˙=−x1+x2=−x1−x2
A
=
[
−
1
1
−
1
−
1
]
⇒
d
e
t
(
λ
I
−
A
)
=
(
λ
+
1
)
2
+
1
⇒
λ
1
,
2
=
−
1
±
i
A= \left[ \begin{matrix} -1 & 1 \\ -1 & -1 \end{matrix} \right]\Rightarrow det(\lambda I-A)=(\lambda+1) ^2+1\Rightarrow \lambda _{1,2}=-1\pm i
A=[−1−11−1]⇒det(λI−A)=(λ+1)2+1⇒λ1,2=−1±i
⇒
系
统
所
有
平
衡
点
渐
进
稳
定
\Rightarrow 系统所有平衡点渐进稳定
⇒系统所有平衡点渐进稳定
3
{
x
1
˙
=
x
1
+
x
2
x
2
˙
=
−
x
1
+
x
2
\left\{ \begin{aligned} \dot{x_1} & = x_1+x_2\\ \dot{x_2} & = -x_1+x_2 \\ \end{aligned} \right.
{x1˙x2˙=x1+x2=−x1+x2
A
=
[
1
1
−
1
1
]
⇒
d
e
t
(
λ
I
−
A
)
=
(
λ
−
1
)
2
+
1
⇒
λ
1
,
2
=
1
±
i
A= \left[ \begin{matrix} 1 & 1 \\ -1 & 1 \end{matrix} \right]\Rightarrow det(\lambda I-A)=(\lambda-1) ^2+1\Rightarrow \lambda _{1,2}=1\pm i
A=[1−111]⇒det(λI−A)=(λ−1)2+1⇒λ1,2=1±i
⇒
系
统
所
有
平
衡
点
不
稳
定
\Rightarrow 系统所有平衡点不稳定
⇒系统所有平衡点不稳定
线性时不变系统稳定性判据的直接法
考虑
x
˙
=
A
x
\dot{x}=Ax
x˙=Ax的平衡点
x
e
=
0
x_e=0
xe=0稳定性,选择Lyapunov函数:
V
(
x
)
=
x
T
P
x
V(x)=x^TPx
V(x)=xTPx
其中,P是正定矩阵,
A
T
P
+
P
A
A^TP+PA
ATP+PA是负定矩阵
V
˙
(
x
)
=
x
˙
T
P
x
+
x
T
P
x
˙
=
x
T
A
T
P
x
+
x
T
P
A
x
=
x
T
(
A
T
P
+
P
A
)
x
<
0
(
x
≠
0
)
\dot{V}(x)=\dot{x}^TPx+x^TP\dot{x}=x^TA^TPx+x^TPAx=x^T(A^TP+PA)x<0(x\ne0)
V˙(x)=x˙TPx+xTPx˙=xTATPx+xTPAx=xT(ATP+PA)x<0(x=0)