融合A*改进RRT算法的路径规划代码仿真
全局路径规划 - RRT算法原理
RRT算法,即快速随机树算法(Rapid Random Tree),是LaValle在1998年首次提出的一种高效的路径规划算法。
RRT算法以初始的一个根节点,通过随机采样的方法在空间搜索,然后添加一个又一个的叶节点来不断扩展随机树。
当目标点进入随机树里面后,随机树扩展立即停止,此时能找到一条从起始点到目标点的路径。
算法的计算过程如下:
step1:初始化随机树。
将环境中起点作为随机树搜索的起点,此时树中只包含一个节点即根节点;
stpe2:在环境中随机采样。
在环境中随机产生一个点,若该点不在障碍物范围内则计算随机树中所有节点到的欧式距离,并找到距离最近的节点,若在障碍物范围内则重新生成并重复该过程直至找到;
stpe3:生成新节点。
在和连线方向,由指向固定生长距离生成一个新的节点,并判断该节点是否在障碍物范围内,若不在障碍物范围内则将添加到随机树 中,否则的话返回step2重新对环境进行随机采样;
step4:停止搜索。
当和目标点之间的距离小于设定的阈值时,则代表随机树已经到达了目标点,将作为最后一个路径节点加入到随机树中,算法结束并得到所规划的路径 。
ID:8230719568349955
喜欢可爱的猫猫
融合A*改进RRT算法的路径规划代码仿真
在现代的自动驾驶系统和机器人导航中,路径规划是一个关键的技术。针对复杂环境下的路径规划问题,研究人员提出了许多算法,其中Rapid Random Tree(快速随机树)算法是一种高效的路径规划算法。
Rapid Random Tree(RRT)算法是由LaValle在1998年首次提出的。该算法以初始的一个根节点为起点,通过随机采样的方法在空间中搜索,不断添加叶节点来扩展随机树。当目标点进入随机树后,随机树的扩展立即停止,此时可以找到一条从起始点到目标点的路径。
RRT算法的计算过程可以分为以下几个步骤:
-
初始化随机树:将起点作为随机树搜索的起点,此时随机树中只包含一个节点即根节点。
-
在环境中随机采样:在环境中随机产生一个点。若该点不在障碍物范围内,则计算随机树中所有节点到该点的欧式距离,并找到距离最近的节点。若该点在障碍物范围内,则重新生成一个点,并重复该步骤,直至找到一个不在障碍物范围内的点。
-
生成新节点:根据连线方向,在指定的生长距离上生成一个新的节点。然后判断该节点是否在障碍物范围内,若不在障碍物范围内,则将该节点添加到随机树中。否则,返回步骤2重新对环境进行随机采样。
-
停止搜索:当随机树中最后一个路径节点与目标点之间的距离小于设定的阈值时,代表随机树已经到达了目标点。将最后一个路径节点加入到随机树中,并结束算法。此时得到了所规划的路径。
RRT算法通过随机采样和树的扩展,在复杂的环境中能够高效地找到一条可行的路径。然而,RRT算法在某些情况下可能会产生较长的路径,这是因为其搜索过程是基于随机采样的。为了改进这一问题,我们可以融合A*算法来引导树的生长。
A算法是一种启发式搜索算法,通过估计一个节点到目标节点的代价函数来指导搜索过程。融合A改进的RRT算法将A*算法的启发式搜索过程与RRT算法的随机树扩展过程相结合,从而能够更快地找到一条更优的路径。
具体来说,融合A*改进的RRT算法可以按以下步骤进行:
-
初始化随机树,设置起点作为根节点。
-
在环境中随机采样一个点。若该点在障碍物范围内,则重新生成一个点;否则,计算该点到目标点的代价函数,并选择最小代价的节点。
-
生成新节点,根据连线方向,在指定的生长距离上生成一个新的节点。判断新节点是否在障碍物范围内,如果不在,则将新节点添加到随机树中。
-
停止搜索,当随机树中最后一个路径节点与目标点之间的距离小于设定的阈值时,代表随机树已经到达了目标点。将最后一个路径节点加入到随机树中,并结束算法。此时得到了所规划的路径。
通过融合A算法的启发式搜索过程,融合A改进的RRT算法能够更加高效地搜索到一条更优的路径。这种改进使得路径规划在复杂环境中具备更强的适应性和鲁棒性。
总结起来,融合A改进的RRT算法是一种高效的路径规划算法,通过结合A算法的启发式搜索和RRT算法的随机树扩展,能够在复杂的环境中快速找到一条最优路径。这种算法的应用领域广泛,可以用于自动驾驶系统、机器人导航等领域,为实现高效、安全的路径规划提供了有效的解决方案。
【相关代码 程序地址】: http://nodep.cn/719568349955.html