欧拉角科普介绍 Roll Pitch Yaw

(转载)
1.欧拉角是什么
来自百度百科:“欧拉角是用来唯一地确定定点转动刚体位置的三个一组独立角参量,由章动角θ、进动角ψ和自转角φ组成,为L.欧拉首先提出,故得名。它们有多种取法,下面是常见的一种”

三个角分别是Yaw,Pitch,Roll。可以这样简单的理解:Yaw 表示绕Z轴的偏航角度,Pitch表示绕X轴旋转的俯仰角度,Roll表示绕Y轴旋转的纵向翻滚角度。也就是说,任意的旋转角度都可以通过这三次按照先后顺序旋转得到。矩阵很难让人具体形象表示,欧拉角就容易多了。注意可能很多地方三个角的先后次序不一样。可以借用在飞机飞行中的三个概念来理解欧拉角。如:Yaw(可以用“左右转向的偏角”理解),Pitch(可以用“俯仰的角度”理解),Roll(可以用“自旋”“滚动”理解) ,窃了三张图来更象形地表示下:
请添加图片描述

请添加图片描述
请添加图片描述

2.欧拉角中的旋转
看看就行,以理解为主,想要彻底搞明白,还是要看课本的讲解以及公式推导!!!
还记得这

### Roll Pitch Yaw 坐标系转换 在多传感器融合环境中,Roll (滚动角), Pitch (俯仰角),Yaw (偏航角) 的定义对于理解车辆或其他载体的姿态至关重要。这些角度用于描述物体相对于惯性坐标系的方向变化。 #### 1. 欧拉角与旋转矩阵之间的关系 为了实现从一种坐标系到另一种坐标系的变换,可以先将欧拉角转化为旋转矩阵。给定一组 roll, pitchyaw 角度,可以通过下面的方式构建对应的旋转矩阵 R: ```python import numpy as np def euler_to_rotation_matrix(roll, pitch, yaw): Rx = np.array([[1, 0, 0 ], [0, np.cos(roll), -np.sin(roll)], [0, np.sin(roll), np.cos(roll)]]) Ry = np.array([[ np.cos(pitch), 0, np.sin(pitch)], [0 , 1, 0 ], [-np.sin(pitch), 0, np.cos(pitch)]]) Rz = np.array([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0 , 0 , 1]]) # 组合得到最终的旋转矩阵 R = Rz @ Ry @ Rx return R ``` 此函数接受三个参数 `roll`, `pitch` 和 `yaw` 并返回相应的旋转矩阵[^3]。 #### 2. 多传感器数据的时间同步 由于不同的传感器可能具有各自独立的工作频率,在实际应用中需要注意时间戳的一致性和校准问题。当 GNSS 接收机、IMU 或者其他类型的传感器共同工作时,确保它们所记录的数据是在同一时刻发生的非常重要。这涉及到硬件层面的设计以及软件算法上的补偿措施[^2]。 #### 3. 实际案例:GNSS/INS 融合系统中的姿态解算 在一个典型的基于 GNSS 和 INS(Inertial Navigation System)组合导航的应用场景下,通过对 IMU 提供的速度增量积分可以获得短时间段内的相对位移;而利用 GNSS 测量绝对地理位置,则能修正累积误差并提供全局参照框架下的精确定位服务。此时,通过上述方法计算出来的旋转矩阵可以帮助完成局部坐标系向世界坐标系的映射过程[^1]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr_LanGX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值