Linux(Centos)使用Docker安装Label-Studio(一条命令教你安装Label-Studio)

一、背景

目前任务需要在内网搭建一套关于PaddleNLP模型训练的内网环境,由于公司内网不能连接外网。原本定的两个方案:

  • 方案一:使用安装包在内网安装,但是发现此过程过于复杂,需要往内网倒腾文件(由于公司制度原因,倒腾文件需要领导审批。。。。)、以及要安装编译环境。即放弃改方案。
  • 方案二:利用docker容器境像,分两个docker容器,①label-studio数据标注环境。②打标后的数据,训练模型环境,需要安装PaddlePaddle 2.4.1、paddleNLP 2.5.2、Python 3.9.19。(推荐此方法)

二、操作步骤

安装最新的Label-Studio镜像并运行

docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest
注意事项:
  • 确认宿主机8080端口是否被占用。

三、验证结论

通过访问本地地址:http://192.168.227.134:8999/user/login/
在这里插入图片描述

四、资源分享

影视资源、学习教程、副业教程等,22专区、20T内容,领取
在这里插入图片描述
在这里插入图片描述

五、遇到问题总结

1.docker启动容器报错:ERRO[0000] error waiting for container: context canceled。

解决方法:
尝试重启docker

service iptables stop
systemctl stop firewalld
service iptables start

我的走到这里没有好,实在不行,重启Linux系统,搞不懂为啥我的重启就好了。

参考教程:官方文档
https://labelstud.io/guide/install#Install-with-Docker

### 配置和使用Docker于Cherry Studio #### Docker简介 Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化[^2]。 #### Cherry Studio概述 在相同条件下,Cherry Studio的回答通常更全面、更详细,能够更好地满足用户的需求。这意味着对于希望深入了解或使用特定技术如Docker集成的情况而言,Cherry Studio提供了详尽的支持材料和服务[^1]。 #### 在Cherry Studio中配置Docker的方法 为了在Cherry Studio环境中成功配置Docker,需遵循一系列具体的指导原则: - **确保环境兼容性** 确认所使用的操作系统版本支持Docker,并且已经正确安装了最新版的Docker Engine。这一步骤至关重要,因为不同的OS可能有不同的安装指南和支持特性。 - **创建项目结构** 建立合理的目录布局来管理不同阶段的工作负载,比如源码存储位置、构建脚本路径等。良好的组织有助于后续维护和发展工作[^3]。 - **编写`docker-compose.yml`文件** 通过定义服务、网络和卷映射等内容,简化多容器应用程序的一键启动流程。下面给出了一段简单的YAML格式配置实例: ```yaml version: '3' services: web: image: nginx:latest ports: - "80:80" volumes: - ./html:/usr/share/nginx/html ``` - **利用官方文档资源** 访问[Docker官网](https://www.docker.com),查阅详细的API说明和技术博客文章,获取更多高级特性和最佳实践建议。这些资料可以帮助解决遇到的技术难题并优化现有解决方案。 #### 实际案例分析——基于CentOS内部网络环境下设置Label-Studio与PaddleNLP联合开发平台 考虑到某些企业可能存在严格的网络安全策略限制外部互联网接入权限,在这种情况下采用预下载好的离线镜像作为基础来进行二次定制成为一种可行的选择。具体来说就是先在外网准备好所需的全部组件(包括但不限于软件库),再将其安全传输至目标服务器完成最终部署。 ```bash # 下载所需镜像 docker pull heartexlabs/label-studio:latest docker save -o label-studio.tar heartexlabs/label-studio:latest # 将tar文件传入内网后加载 docker load --input=label-studio.tar # 启动容器 docker run -d -p 8080:8080 -v /path/to/local/data:/label-studio/data heartexlabs/label-studio:latest ``` 上述命令展示了如何在一个受限连通性的场景下快速建立起功能完备的数据标注工具链路,同时为之后引入其他AI框架奠定了坚实的基础架构支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值