论文: Learning Cross-Modality Encoder Representations from Transformers
地址:https://arxiv.org/abs/1908.07490?context=cs
code:https://github.com/airsplay/lxmert
LXMERT 框架来学习语言和视觉的联系
创新点:创造新的跨模态模型,着重于学习视觉和语言的交互作用。
- Input Embeddings
在LXMERT中的输入编码层将输入(即图像和句子)转换为两个特征序列:词级句子嵌入和对象级图像嵌入。
这些嵌入特性将由后面的编码层进一步处理。
- 它含有3个Encoder:一个对象关系编码器 N_R 、一个语言编码器 N_L 和一个跨模态编码器 N_X
- 它使用了 5 个不同的有代表性的pre-train任务:
- 掩码交叉模态语言建模
- 通过ROI特征回归进行掩码目标预测
- 通过检测到的标签分类进行掩蔽目标预测
- 交叉模态匹配
- 图像问题解答
这些多模态pre-train既可以帮助学习同一个模态内的联系,也可以帮助学习跨模态的联系。
Fine Tune
https://www.jianshu.com/p/4b17dcc199e1
Google Bert模型
https://zhuanlan.zhihu.com/p/46652512