计算机视觉 | 面试题:05、常见的三种激活函数sigmoid、tanh和ReLU,以及它们各自的特点和用途。

本文介绍了深度学习中常用的激活函数sigmoid、tanh和ReLU,包括它们的作用、特点和应用场景。激活函数引入非线性,使模型更丰富。tanh相对于sigmoid在深度网络中能更好地保持零均值,有利于收敛;RNN中通常选择tanh是因为ReLU可能导致梯度爆炸。针对ReLU的‘死亡’问题,可以考虑使用Leaky ReLU或调整学习率策略。
摘要由CSDN通过智能技术生成

问题

在笔试问答题或面试中偶尔有涉及到激活函数的问题,这里简单总结一下深度学习中常见的三种激活函数sigmoid、tanh和ReLU,以及它们各自的特点和用途。

激活函数

激活函数的作用是什么?

激活函数的主要作用是在神经网络中引入非线性因素

常见的三种激活函数

sigmoid tanh ReLU
公式 f ( x ) =
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值