在过去的几年里,比特币已经成为全球金融市场中备受关注的数字资产之一。其价格的剧烈波动引起了许多投资者、交易者和观察者的兴趣。在这个高度不确定的市场中,通过使用机器学习技术来预测比特币价格变动变得愈发重要。
本文将探讨一种使用深度学习技术来预测比特币价格的方法。我们将使用历史比特币价格数据集,通过对数据进行预处理和模型训练,构建一个能够预测未来比特币价格走势的模型。
首先,我们将解压并加载历史比特币价格数据集。然后,我们将对数据进行预处理,包括归一化处理,以便在模型中使用。我们使用的是循环神经网络(LSTM)模型,这种模型适用于处理序列数据,如时间序列。
我们将通过Keras库构建LSTM模型,包括输入层、LSTM层和输出层。在这个模型中,我们将使用sigmoid激活函数来控制信息的流动,并将均方误差作为损失函数来衡量预测的误差。
# Importing the