
文章目录
Overviews
What problem is addressed in the paper?
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics.
What is the key to the solution?
Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding.
What is the main contribution?
we show that a certain parameterization of diffusion models reveals an equivalence with denoising score matching ov

本文介绍了一种基于扩散概率模型的高质量图像合成方法。该方法利用新型连接,在训练中结合了去噪得分匹配与朗之万动力学,实现了高质量图像样本的生成,并在多个基准测试中取得了优秀结果。
最低0.47元/天 解锁文章
684

被折叠的 条评论
为什么被折叠?



