[论文解析] Denoising Diffusion Probabilistic Models

本文介绍了一种基于扩散概率模型的高质量图像合成方法。该方法利用新型连接,在训练中结合了去噪得分匹配与朗之万动力学,实现了高质量图像样本的生成,并在多个基准测试中取得了优秀结果。

在这里插入图片描述

Overviews

What problem is addressed in the paper?

We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics.

What is the key to the solution?

Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding.

What is the main contribution?

we show that a certain parameterization of diffusion models reveals an equivalence with denoising score matching ov

<think>嗯,用户问的是Denoising Diffusion Probabilistic Models的中文翻译。首先,我需要确认这个词组的准确翻译。根据提供的引用资料,比如引用[2]提到了“生成式AI扩散模型-Diffusion Model Denoising Diffusion Probabilistic Models”,这里的中文翻译应该是“去噪扩散概率模型”。另外,引用[3]也提到了“扩散模型”,所以综合来看,正确的翻译应该是“去噪扩散概率模型”。 接下来,用户可能对DDPM的基本原理和应用场景感兴趣,虽然他们直接问的是翻译,但可能需要进一步的解释。比如,DDPM属于生成模型的一种,通过逐步去噪来生成数据,这个过程类似于扩散的逆过程。根据引用[3],扩散模型基于马尔可夫链,通过反向去噪恢复图像,灵感来自非平衡热力学中的扩散过程。 另外,用户可能还想知道DDPM与其他生成模型(如GAN或VAE)的区别,或者它的优势在哪里。例如,引用[4]提到方差选择对生成结果的影响较小,随着训练步数增加,均值估计的影响更大,这可能说明DDPM在稳定性和生成质量上的优势。 用户可能需要更深入的内容,比如DDPM的训练过程、应用案例或者数学原理。根据引用[4],方差的选择在大部分时间步中是固定的,这可能简化模型训练。此外,DDPM在图像生成、音频合成等领域有广泛应用,这也是用户可能感兴趣的方向。 总结一下,用户的核心需求是中文翻译,但潜在的可能需要了解其基本原理、优势、应用场景以及与其他模型的对比。需要确保回答准确且覆盖这些潜在问题,同时引用提供的资料来支持回答。</think>### Denoising Diffusion Probabilistic Models 的中文翻译 Denoising Diffusion Probabilistic Models(DDPM)的中文翻译为**去噪扩散概率模型**。该模型是扩散模型Diffusion Model)的一种实现形式,其核心思想是通过模拟数据逐步加噪和反向去噪的马尔可夫链过程,最终生成高质量的数据样本[^3]。 ### 核心概念解析 1. **加噪过程(正向过程)**:通过多步向数据中添加高斯噪声,将原始数据逐渐变为纯噪声,模拟热力学中的扩散现象。 2. **去噪过程(反向过程)**:通过神经网络学习如何从噪声中逐步恢复原始数据,每一步预测当前噪声并去除,最终生成目标样本[^3]。 3. **方差调整**:在加噪过程中,噪声的方差(如$\beta_t$和$\tilde{\beta}_t$)会根据时间步动态调整,但随着时间步数增加(例如$T=4000$),方差的影响逐渐减弱,均值预测($\mu_\theta(x_t, t)$)成为主导因素[^4]。 ### 示例代码(简化的扩散过程) ```python # 加噪过程示例 def forward_diffusion(x0, t, beta_schedule): noise = torch.randn_like(x0) alpha = 1 - beta_schedule[t] xt = torch.sqrt(alpha) * x0 + torch.sqrt(1 - alpha) * noise return xt, noise ``` ### 相关问题 1. **去噪扩散概率模型GAN、VAE有何区别?** 2. **DDPM中如何设计有效的噪声调度(Noise Schedule)?** 3. **扩散模型在图像生成以外的领域有哪些应用?** 4. **为什么DDPM的方差调整对生成质量影响较小?** [^4] ### 引用来源 [^1]: Diffusion Model(Denoising Diffusion Probabilistic Models) 作用 [^2]: 【DiffusionDenoising Diffusion Probabilistic Models (DDPM)入门指南 : 扩散模型基于马尔可夫链的反向去噪原理 : 方差$\beta_t$与$\tilde{\beta}_t$对生成结果的影响分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Summer tree

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值