流形学习(sklearn调包的demo)

导入数据

from sklearn.datasets import load_digits

digits = load_digits(n_class=6)
X, y = digits.data, digits.target
n_samples, n_features = X.shape
n_neighbors = 30

可视化数字

import matplotlib.pyplot as plt

fig, axs = plt.subplots(nrows=10, ncols=10, figsize=(6, 6))
for idx, ax in enumerate(axs.ravel()):
    ax.imshow(X[idx].reshape((8, 8)), cmap=plt.cm.binary)
    ax.axis("off")
    fig.suptitle("A selection from the 64-dimensional digits dataset", fontsize=16)

在这里插入图片描述

可视化的函数

import numpy as np
from matplotlib import offsetbox
from sklearn.preprocessing import MinMaxScaler


def plot_embedding(X, title, ax):
    # 标准化数据
    X = MinMaxScaler().fit_transform(X)

    shown_images = np.array([[1.0, 1.0]])  # 一个二维点,值较大
    for i 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值