高维数据意味着需要多于两个或三个维度来表示的数据,可能很难解释。简化的一种方法是假设感兴趣的数据位于低维空间内。如果感兴趣的数据具有足够低的维数,则数据可以在低维空间中可视化。
下面是一些值得注意的非线性降维方法的总结。许多非线性降维方法与下面列出的线性方法有关。非线性方法可以大致分为两类:一类提供映射(从高维空间到低维嵌入或反之),另一类只是提供可视化。
https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
高维数据意味着需要多于两个或三个维度来表示的数据,可能很难解释。简化的一种方法是假设感兴趣的数据位于低维空间内。如果感兴趣的数据具有足够低的维数,则数据可以在低维空间中可视化。
下面是一些值得注意的非线性降维方法的总结。许多非线性降维方法与下面列出的线性方法有关。非线性方法可以大致分为两类:一类提供映射(从高维空间到低维嵌入或反之),另一类只是提供可视化。
https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction