非线性降维(Nonlinear dimensionality reduction)

高维数据意味着需要多于两个或三个维度来表示的数据,可能很难解释。简化的一种方法是假设感兴趣的数据位于低维空间内。如果感兴趣的数据具有足够低的维数,则数据可以在低维空间中可视化。

下面是一些值得注意的非线性降维方法的总结。许多非线性降维方法与下面列出的线性方法有关。非线性方法可以大致分为两类:一类提供映射(从高维空间到低维嵌入或反之),另一类只是提供可视化。

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值