【自动控制原理】根轨迹法之绘制根轨迹

一、根轨迹原理

1.1 零极点分布图

在复平面上,用×表示极点,用○表示零点。如开环传递函数 W ( s ) = 2 ( s + 1 ) ( s + 2 ) ( s + 3 ) W(s)=\frac{2(s+1)}{(s+2)(s+3)} W(s)=(s+2)(s+3)2(s+1)的零极点分布图为
在这里插入图片描述
matlab命令:

>> sys = zpk([-1],[-2,-3],2)

sys =
 
    2 (s+1)
  -----------
  (s+2) (s+3)
 
Continuous-time zero/pole/gain model.

>> pzmap(sys)
>> axis([-4,1,-1,1])

1.2 根轨迹概念

开环传递函数某一参量从0变化到无穷时,其闭环系统的特征根在复平面上运动的轨迹称为根轨迹。

由于线性系统性能与特征根密切相关,故研究根的变化可以反映系统性能。比如判定稳定性和响应,就可以按下列区域判定。
在这里插入图片描述
而反过来,也可以通过设计根的运行轨迹,选择合适的参数和零极点。

具体来说:
(1)开环增益从0变化到∞时,如果根轨迹始终没有越过虚轴进入右半平面,则对于所有K都是稳定的。如果根轨迹与虚轴相交,则相交时对应的 K 0 K_0 K0值即为临界增益。如果根从左侧运行到右侧,则 0 < K < K 0 0<K<K_0 0<K<K0时系统稳定;反之,如果从右侧运行到左侧且稳定在左侧,则 K 0 < K < ∞ K_0<K<\infty K0<K<时系统稳定
(2)开环系统在坐标原点处的极点重数等于系统的型别。此时, K K K值就是静态误差系数。
(3)通过确定系统阻尼比,可以确定系统特征根应在的位置,从而实现对参数的设计。

1.3 根轨迹方程

设一个线性闭环系统前向通道传递函数为 G ( s ) G(s) G(s),反馈通道传递函数为 H ( s ) H(s) H(s),则闭环系统传递函数可以表示为 W ( s ) = G ( s ) 1 + G ( s ) H ( s ) W(s)=\frac{G(s)}{1+G(s)H(s)} W(s)=1+G(s)H(s)G(s)

那么,其闭环特征方程为 D ( s ) = 1 + G ( s ) H ( s ) = 0 D(s)=1+G(s)H(s)=0 D(s)=1+G(s)H(s)=0即有 G ( s ) H ( s ) = K ∗ ∏ j = 1 m ( s − z j ) ∏ i = 1 n ( s − p i ) = − 1 = e j ( 2 k + 1 ) π ,其中 k ∈ Z G(s)H(s)=\frac{K^*\prod_{j=1}^m (s-z_j)}{\prod_{i=1}^n (s-p_i)}=-1=e^{j(2k+1)\pi},其中k\in Z G(s)H(s)=i=1n(spi)Kj=1m(szj)=1=ej(2k+1)π,其中kZ复变函数告诉我们:两个复数相乘,积的幅值等于两个复数幅值的乘积,积的幅角等于两个复数幅角的和。

所以由上式可以得出根轨迹的相角条件和幅值条件:
相角条件: ∑ j = 1 m ∠ ( s − z j ) − ∑ i = 1 n ∠ ( s − p i ) = ( 2 k + 1 ) π ,其中 k ∈ Z \sum_{j=1}^{m}{\angle(s-z_j)}-\sum_{i=1}^{n}{\angle(s-p_i)}=(2k+1)\pi,其中k\in Z j=1m(szj)i=1n(spi)=(2k+1)π,其中kZ
幅值条件: K ∗ = ∏ i = 1 n ∣ s − p i ∣ ∏ j = 1 m ∣ s − z j ∣ K^*=\frac{\prod_{i=1}^{n}{|s-p_i|}}{\prod_{j=1}^{m}{|s-z_j|}} K=j=1mszji=1nspi

【应用举例】:
已知 G ( s ) H ( s ) = K ∗ ( s + 3 ) ( s + 1 ) ( s + 2 ) G(s)H(s)=\frac{K^*(s+3)}{(s+1)(s+2)} G(s)H(s)=(s+1)(s+2)K(s+3)证明其根轨迹是圆。
证明:
s = σ + j ω s=\sigma+j\omega s=σ+,得 G ( σ + j ω ) H ( σ + j ω ) = K ∗ ( 3 + σ + j ω ) ( 1 + σ + j ω ) ( 2 + σ + j ω ) G(\sigma+j\omega)H(\sigma+j\omega)=\frac{K^*(3+\sigma+j\omega)}{(1+\sigma+j\omega)(2+\sigma+j\omega)} G(σ+)H(σ+)=(1+σ+)(2+σ+)K(3+σ+),则由相角条件:
a r c t a n ω 3 + σ − a r c t a n ω 1 + σ − a r c t a n ω 2 + σ = π arctan\frac{\omega}{3+\sigma}-arctan\frac{\omega}{1+\sigma}-arctan\frac{\omega}{2+\sigma}=\pi arctan3+σωarctan1+σωarctan2+σω=π两边取正切,得: − ω ( σ 2 + 6 σ + 7 ) − ω 3 σ 3 + 6 σ 2 + ( 11 + ω 2 ) σ + 6 = 0 \frac{-\omega(\sigma^2+6\sigma+7)-\omega^3}{\sigma^3+6\sigma^2+(11+\omega^2)\sigma+6}=0 σ3+6σ2+(11+ω2)σ+6ω(σ2+6σ+7)ω3=0
所以 − ω ( σ 2 + 6 σ + 7 ) − ω 3 = 0 -\omega(\sigma^2+6\sigma+7)-\omega^3=0 ω(σ2+6σ+7)ω3=0 ( σ + 3 ) 2 + ω 2 = 2 (\sigma+3)^2+\omega^2=2 (σ+3)2+ω2=2所以,根轨迹是圆。

我们可以用matlab进行验证:

>> sys = zpk([-3],[-2,-1],1)

sys =
 
     (s+3)
  ------------
  (s+2) (s+1) 
 
Continuous-time zero/pole/gain model.

>> rlocus(sys)
>> axis equal

在这里插入图片描述

二、根轨迹绘制法则

2.1 180°根轨迹和0°根轨迹

1、当控制系统为最小相位系统时,其相角条件满足 ( 2 k + 1 ) π (2k+1)\pi (2k+1)π,当控制系统不是最小相位系统时,不能采用常规根轨迹法绘制系统根轨迹,因为此时系统相角条件遵循 0 + 2 k π 0+2k\pi 0+2

2、产生0°根轨迹的原因:
(1)系统具有正实部开环零极点包含 s s s最高次幂系数为负数的因子
(2)控制系统含有正反馈回路。

3、判定0°根轨迹和180°根轨迹的数学方法
写出特征方程: 1 + G ( s ) H ( s ) = 0 1+G(s)H(s)=0 1+G(s)H(s)=0,然后化为: G ( s ) H ( s ) = K ∗ ∏ j = 1 m ( s − z j ) ∏ i = 1 n ( s − p i ) = ± 1 G(s)H(s)=\frac{K^*\prod_{j=1}^{m}(s-z_j)}{\prod_{i=1}^{n}(s-p_i)}=\pm1 G(s)H(s)=i=1n(spi)Kj=1m(szj)=±1如果等号右侧为-1,则为180°根轨迹,若为1,则为0°根轨迹。

2.2 180°根轨迹绘制法则

设开环传递函数: G ( s ) H ( s ) = K ∗ ∏ j = 1 m ( s − z j ) ∏ i = 1 n ( s − p i ) G(s)H(s)=\frac{K^*\prod_{j=1}^{m}(s-z_j)}{\prod_{i=1}^{n}(s-p_i)} G(s)H(s)=i=1n(spi)Kj=1m(szj) 则根轨迹绘制法则如下:

1、起点和终点:起始于开环极点或无穷远,终止于开环零点或无穷远。

2、根轨迹分支数 = m a x { m , n } max\lbrace m,n \rbrace max{m,n}

3、渐近线(通常 n > m n>m n>m):

(1)条数 = n − m n-m nm

(2)与实轴夹角: ϕ a = ( 2 k + 1 ) π n − m \phi_a=\frac{(2k+1)\pi}{n-m} ϕa=nm(2k+1)π

(3)交点: σ a = ∑ i = 1 n p i − ∑ j = 1 m z j n − m \sigma_a=\frac{\sum_{i=1}^{n}{p_i}-\sum_{j=1}^{m}{z_j}}{n-m} σa=nmi=1npij=1mzj

4、实轴分布:对于实轴上某一区域,如果其右侧开环传递函数零极点个数之和为奇数,则该区域是根轨迹区域。

5、分离点和分离角
分离点坐标满足: ∑ j = 1 m 1 d − z j = ∑ i = 1 n 1 d − p i \sum_{j=1}^{m}\frac{1}{d-z_j}=\sum_{i=1}^{n}\frac{1}{d-p_i} j=1mdzj1=i=1ndpi1
l l l条根轨迹相遇,分离角满足: ϕ d = ( 2 k + 1 ) π l ,其中 k ∈ Z \phi_d=\frac{(2k+1)\pi}{l},其中k \in Z ϕd=l(2k+1)π,其中kZ
6、起始角和终止角
起始角: θ p i = ( 2 k + 1 ) π + ( ∑ j = 1 m ϕ z j p i − ∑ j = 1 n θ p j p i ) ,其中, i ≠ j \theta_{p_i}=(2k+1)\pi+(\sum_{j=1}^{m}\phi_{z_jp_i}-\sum_{j=1}^{n}\theta_{p_jp_i}),其中,i\neq j θpi=(2k+1)π+(j=1mϕzjpij=1nθpjpi),其中,i=j
终止角: ϕ z i = ( 2 k + 1 ) π − ( ∑ j = 1 m ϕ z j z i − ∑ j = 1 n θ p j z i ) ,其中, i ≠ j \phi_zi=(2k+1)\pi-(\sum_{j=1}^{m}\phi_{z_jz_i}-\sum_{j=1}^{n}\theta_{p_jz_i}),其中,i\neq j ϕzi=(2k+1)π(j=1mϕzjzij=1nθpjzi),其中,i=j

7、根轨迹与虚轴交点:如果根轨迹与虚轴相交,则交点的 K ∗ K^* K值和 ω \omega ω值可由劳斯判据确定,也可以令闭环特征方程中 s = j ω s=j\omega s=,然后令实部虚部分别等于0,得到二元方程组,求解即可。

8、根之和 n − m ≥ 2 n-m\geq2 nm2时,开环 n n n个极点的和等于闭环特征方程 n n n个特征根的和。

【实例】已知单位负反馈系统开环传递函数 W ( s ) = K g ∗ ( s + 3 ) ( s + 1 ) ( s + 2 ) ( s 2 + s + 1.25 ) W(s)=\frac{K_{g}^{*}(s+3)}{(s+1)(s+2)(s^2+s+1.25)} W(s)=(s+1)(s+2)(s2+s+1.25)Kg(s+3)绘制根轨迹。

显然,系统有一个开环零点 z = − 3 z=-3 z=3,四个开环极点 p 1 = − 1 , p 2 = − 2 , p 3 , 4 = − 0.5 ± j p_1=-1,p_2=-2,p_{3,4}=-0.5\pm j p1=1p2=2p3,4=0.5±j所以分支数 = m a x { 1 , 4 } = 4 =max \lbrace 1,4\rbrace=4 =max{1,4}=4

渐近线条数: n − m = 4 − 1 = 3 n-m=4-1=3 nm=41=3

渐近线交角: ϕ a = ( 2 k + 1 ) π n − m = π , ± π 3 \phi_a=\frac{(2k+1)\pi}{n-m}=\pi,\pm\frac{\pi}{3} ϕa=nm(2k+1)π=π,±3π

渐近线交点: σ a = ∑ i = 1 n p i − ∑ j = 1 m z j n − m = − 1 3 \sigma_a=\frac{\sum_{i=1}^{n}p_i-\sum_{j=1}^{m}z_j}{n-m}=-\frac{1}{3} σa=nmi=1npij=1mzj=31

实轴分布:由零极点分布图知 ( − ∞ , − 3 ) ∪ ( − 2 , − 1 ) (-\infty,-3)\cup(-2,-1) (,3)(2,1)是根轨迹区域

分离点: 1 d + 3 = 1 d + 1 + 1 d + 2 + 1 d + 0.5 + j + 1 d + 0.5 − j \frac{1}{d+3}=\frac{1}{d+1}+\frac{1}{d+2}+\frac{1}{d+0.5+j}+\frac{1}{d+0.5-j} d+31=d+11+d+21+d+0.5+j1+d+0.5j1解得 d 1 = − 1.688 , d 2 = − 3.722 , d 3 , 4 = − 0.67 ± 0.592 j d_1=-1.688,d_2=-3.722,d_{3,4}=-0.67\pm 0.592j d1=1.688d2=3.722d3,4=0.67±0.592j(舍)
分离角: ϕ d = ± π 2 \phi_d=\pm\frac{\pi}{2} ϕd=±2π

与虚轴交点:
闭环特征方程 D ( s ) = s 4 + 4 s 3 + 6.25 s 2 + 5.75 s + 2.5 + K g ∗ s + 3 K g ∗ = 0 D(s)=s^4+4s^3+6.25s^2+5.75s+2.5+K_{g}^*s+3K_{g}^*=0 D(s)=s4+4s3+6.25s2+5.75s+2.5+Kgs+3Kg=0,令 s = j ω s=j\omega s=
D ( j ω ) = ω 4 − 4 ω 3 j − 6.25 ω 2 + 5.75 ω j + 2.5 + K g ∗ ω j + 3 K g ∗ = ( ω 4 − 6.25 ω 2 + 2.5 + 3 K g ∗ ) + ( K g ∗ ω + 5.75 ω − 4 ω 3 ) j = 0 D(j\omega)=\omega^4-4\omega^3j-6.25\omega^2+5.75\omega j+2.5+K_{g}^*\omega j+3K_{g}^*=(\omega^4-6.25\omega^2+2.5+3K_{g}^*)+(K_{g}^*\omega+5.75\omega-4\omega^3)j=0 D()=ω44ω3j6.25ω2+5.75ωj+2.5+Kgωj+3Kg=(ω46.25ω2+2.5+3Kg)+(Kgω+5.75ω4ω3)j=0
所以 { ω 4 − 6.25 ω 2 + 2.5 + 3 K g ∗ = 0 K g ∗ ω + 5.75 ω − 4 ω 3 = 0 \left\{ \begin{array}{c} \omega^4-6.25\omega^2+2.5+3K_{g}^*=0 \\ K_{g}^*\omega+5.75\omega-4\omega^3=0 \\ \end{array} \right. {ω46.25ω2+2.5+3Kg=0Kgω+5.75ω4ω3=0解得 K g ∗ = 1.9398 或 − 36.44 (舍), ω = 1.3865 K_{g}^*=1.9398或-36.44(舍),\omega=1.3865 Kg=1.939836.44(舍),ω=1.3865
所以绘制图如下:
在这里插入图片描述
用matlab进行绘图:

>> sys = zpk([-3],[-2,-1,-0.5+j,-0.5-j],1)

sys =
 
             (s+3)
  ----------------------------
  (s+2) (s+1) (s^2 + s + 1.25)
 
Continuous-time zero/pole/gain model.

>> rlocus(sys)
>> axis equal

在这里插入图片描述
附:分离点计算的matlab程序:

>> solve(1/(d+3)==1/(d+1)+1/(d+2)+1/(d+0.5+j)+1/(d+0.5-j),d)
ans =
 
 root(z^4 + (20*z^3)/3 + (169*z^2)/12 + (25*z)/2 + 59/12, z, 1)
 root(z^4 + (20*z^3)/3 + (169*z^2)/12 + (25*z)/2 + 59/12, z, 2)
 root(z^4 + (20*z^3)/3 + (169*z^2)/12 + (25*z)/2 + 59/12, z, 3)
 root(z^4 + (20*z^3)/3 + (169*z^2)/12 + (25*z)/2 + 59/12, z, 4)

>> vpa(ans)
ans =
 
                                         -3.6375710980630009637620727119609
                                         -1.6876563208283032347505827804396
 - 0.67071962388768123407700558713306 - 0.59247751039734779329021710892861i
 - 0.67071962388768123407700558713306 + 0.59247751039734779329021710892861i

2.3 0°根轨迹绘制法则

零度根轨迹的绘制法则与180度根轨迹类似,只是需要对个别位置进行更改,具体如下:
(1)渐近线交角:在0°根轨迹中, ϕ a = 2 k π n − m \phi_a=\frac{2k\pi}{n-m} ϕa=nm2.
(2)实轴分布:在0°根轨迹中,实轴某一区域若其右侧零极点个数之和为偶数个,则该区域为根轨迹区域。
(3)起始角和终止角:在0°根轨迹中,要把180°根轨迹起始角终止角公式中的 ( 2 k + 1 ) π (2k+1)\pi (2k+1)π变为 2 k π 2k\pi 2

例: W ( s ) = K g ∗ ( s + 3 ) ( s + 2 ) ( 1 − s ) W(s)=\frac{K_{g}^*(s+3)}{(s+2)(1-s)} W(s)=(s+2)(1s)Kg(s+3)
在这里插入图片描述
PS:可对比1.3节中的180°根轨迹

三、广义根轨迹绘制方法

广义根轨迹是指参量不是放大系数的时候,需要做一定变形,将变化参量转化到以前“放大系数”的“位置”,得到等效开环传递函数,从而绘制根轨迹。

比如单位负反馈 W ( s ) = 2 ( s + 3 ) ( a s + 1 ) ( s + 2 ) W(s)=\frac{2(s+3)}{(as+1)(s+2)} W(s)=(as+1)(s+2)2(s+3)绘制 a a a变化时根轨迹

显然,特征方程: D ( s ) = a s ( s + 2 ) + 3 s + 8 = 0 D(s)=as(s+2)+3s+8=0 D(s)=as(s+2)+3s+8=0变形得: 1 + a s ( s + 2 ) 3 s + 8 = 0 1+\frac{as(s+2)}{3s+8}=0 1+3s+8as(s+2)=0
所以 W e q ( s ) = a s ( s + 2 ) 3 s + 8 W_{eq}(s)=\frac{as(s+2)}{3s+8} Weq(s)=3s+8as(s+2)
绘制根轨迹如图:
在这里插入图片描述

  • 12
    点赞
  • 76
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值