【自动控制原理】控制系统数学模型

一、控制系统数学模型

1.1 数学模型概述

控制系统的数学模型是为了定量描述系统的性能指标而构建的用以描述系统内部物理量之间关系的数学表达式。

建立数学模型的方法可以使用分析法和实验法。

1.2 时域、复域、频域下的常见数学模型举例

时域:微分方程、差分方程、状态方程
复域:传递函数、结构框图、信号流图
频域:频率特性、奈氏图、伯德图

1.3 时域微分方程建模示例一

在这里插入图片描述
由基尔霍夫电压定律得: u I ( t ) = R i ( t ) + L d i ( t ) d t + u O ( t ) u_I(t)=Ri(t)+L\frac{di(t)}{dt}+u_O(t) uI(t)=Ri(t)+Ldtdi(t)+uO(t)由电容特性方程得: u O ( t ) = 1 C ∫ 0 t i ( τ )   d τ u_O(t)=\frac{1}{C}\int_0^t {i(\tau)} \,{\rm d}\tau uO(t)=C10ti(τ)dτ那么:
L C d 2 u O ( t ) d t 2 + R C d u O ( t ) d t + u O ( t ) = u I ( t ) LC\frac{d^2u_O(t)}{dt^2}+RC\frac{du_O(t)}{dt}+u_O(t)=u_I(t) LCdt2d2uO(t)+RCdtduO(t)+uO(t)=uI(t)
可以看出,上式表征了输出电压与输入电压的关系,满足二阶定常线性微分方程关系。

1.4 时域微分方程建模示例二

在这里插入图片描述
由牛顿第二定律: m d 2 x ( t ) d t 2 = F ( t ) − F 1 ( t ) − F 2 ( t ) m\frac{d^2x(t)}{dt^2}=F(t)-F_1(t)-F_2(t) mdt2d2x(t)=F(t)F1(t)F2(t)而:
F 1 ( t ) = f v = f d x ( t ) d t F_1(t)=fv=f\frac{dx(t)}{dt} F1(t)=fv=fdtdx(t) F 2 ( t ) = k x ( t ) F_2(t)=kx(t) F2(t)=kx(t)
所以: m d 2 x ( t ) d t 2 + f d x ( t ) d t + k x ( t ) = F ( t ) m\frac{d^2x(t)}{dt^2}+f\frac{dx(t)}{dt}+kx(t)=F(t) mdt2d2x(t)+fdtdx(t)+kx(t)=F(t)可以看出,上式表示了输入力 F ( t ) F(t) F(t)与输出位移 x ( t ) x(t) x(t)的变化关系

1.5 线性系统特性

线性系统满足齐次性和叠加性。所谓齐次性,就是输入输出满足: r 1 r 2 = c 1 c 2 \frac{r_1}{r_2}=\frac{c_1}{c_2} r2r1=c2c1;所谓叠加性就是如果 r = r 1 + r 2 r=r_1+r_2 r=r1+r2则输出为 c = c 1 + c 2 c=c_1+c_2 c=c1+c2

从结构来看,线性系统中所有元件均为线性元件,非线性系统中存在非线性的元件。什么是线性元件?通俗来说,就是其特性方程的输入输出关系为线性的(注:线性是次数为1,而不是阶数为1,可以含有导数项,但不论几阶导数,其次数都为1。如1.3中所示电路,其元件属于线性元件)

1.6 运动模态

对于一个线性系统,其特征方程通解与微分方程特征根有关。如果n阶微分方程特征根为 λ 1 , λ 2 , … … , λ n \lambda_1,\lambda_2,……,\lambda_n λ1λ2……λn且无重根,就把 e λ 1 t , e λ 2 t , … … e λ 1 t e^{\lambda_1t},e^{\lambda_2t},……e^{\lambda_1t} eλ1teλ2t……eλ1t称为该微分方程描述的运动的模态。

每一种模态代表一种运动形式,齐次微分方程的通解是模态的线性组合。

那么,如果特征根存在重根呢?根据高数微分方程知识,系统模态存在形如 t e λ t , t 2 e λ t te^{\lambda t},t^2e^{\lambda t} teλtt2eλt的分量。如果系统有共轭复根,则存在 e δ t s i n ( ω t ) e^{\delta t}sin(\omega t) eδtsin(ωt) e δ t c o s ( ω t ) e^{\delta t}cos(\omega t) eδtcos(ωt)

二、线性系统复域数学模型

2.1 传递函数

2.1.1 传递函数

线性定常系统在零初始条件下,系统输出与输入的拉氏变换之比。
零初始条件:输入输出及其各阶导数从0+时刻加入到系统,在t=0及0-时刻以及t<0时均为0

2.1.2 推导

设线性定常系统: a 0 d n d t n c ( t ) + a 1 d n − 1 d t n − 1 c ( t ) + … … + a n c ( t ) = b 0 d m d t m r ( t ) + b 1 d m − 1 d t m − 1 r ( t ) + … … + b m r ( t ) a_0\frac{d^n}{dt^n}c(t)+a_1\frac{d^{n-1}}{dt^{n-1}}c(t)+……+a_nc(t)=b_0\frac{d^m}{dt^m}r(t)+b_1\frac{d^{m-1}}{dt^{m-1}}r(t)+……+b_mr(t) a0dtndnc(t)+a1dtn1dn1c(t)+……+anc(t)=b0dtmdmr(t)+b1dtm1dm1r(t)+……+bmr(t)
做拉氏变换: ( a 0 s n + a 1 s n − 1 + … … + a n ) C ( s ) = ( b 0 s m + b 1 s m − 1 + … … + b m ) R ( s ) (a_0s^n+a_1s^{n-1}+……+a_n)C(s)=(b_0s^m+b_1s^{m-1}+……+b_m)R(s) (a0sn+a1sn1+……+an)C(s)=(b0sm+b1sm1+……+bm)R(s)
∴ 系统传递函数为 G ( s ) = C ( s ) R ( s ) = ∑ i = 0 m b i s m − i ∑ n j = 0 a j s n − j G(s)=\frac{C(s)}{R(s)}=\frac{\sum^{m}_{i=0}{b_is^{m-i}}}{\sum^{j=0}_{n}{a_js^{n-j}}} G(s)=R(s)C(s)=nj=0ajsnji=0mbismi

2.1.3 Matlab写连续传递函数的方式

>> sys = tf([1 2 3],[5 2 3])

sys =
 
   s^2 + 2 s + 3
  ---------------
  5 s^2 + 2 s + 3
 
Continuous-time transfer function.
>> sys = zpk([-1 -2 -3],[-2.5 -1.3 -3.6 -2.9],5)

sys =
 
        5 (s+1) (s+2) (s+3)
  -------------------------------
  (s+2.5) (s+2.9) (s+3.6) (s+1.3)
 
Continuous-time zero/pole/gain model.

2.1.4 传递函数的性质

1、通常, m < n m<n m<n,这意味着传递函数是有理真分式;
2、传递函数取决于系统结构,用输出除以输入只是一种计算式而非决定式,传递函数与输入信号无关;
3、传递函数描述输入输出关系,是时域微分方程在复域下的表示;
4、传递函数的反拉氏变换是系统的脉冲响应(这是因为,脉冲信号的拉氏变换为1,也就是说脉冲信号的输出信号的拉氏变换,就是系统的传递函数)
5、传递函数是在零初始条件下定义的,接收输入信号前,系统处于稳定工作状态;
6、传递函数的参数,表征系统的性能

2.2 零极点

2.2.1 首一标准型和尾一标准型

传递函数因式分解后有两种表示方法,一种是
G ( s ) = K ∗ ∏ i = 1 m ( s − z i ) ∏ j = 1 n ( s − p j ) G(s)=\frac{K^*\prod^{m}_{i=1}{(s-z_i)}}{\prod^{n}_{j=1}{(s-p_j)}} G(s)=j=1n(spj)Ki=1m(szi)称之为首一标准型,其中 K ∗ K^* K称之为根轨迹增益(根轨迹见我的另一篇博文:根轨迹法之绘制根轨迹)。另一种写法是
G ( s ) = K ∏ i = 1 m ( τ i s + 1 ) ∏ j = 1 n ( T j s + 1 ) G(s)=\frac{K\prod^{m}_{i=1}{(\tau_is+1)}}{\prod^{n}_{j=1}{(T_js+1)}} G(s)=j=1n(Tjs+1)Ki=1m(τis+1)称之为尾一标准型,其中 K K K称为开环增益。

2.2.2 零极点的意义

传递函数的极点决定系统响应的形式(模态),零点影响系统各模态在响应中所占的比重。

2.2.3 零极点分布图

见博文:根轨迹法之绘制根轨迹

2.3 典型环节及其传递函数

一般来说,系统传递函数可以分为如下几个简单的环节,它们及其传递函数如下所示:
(1)比例环节: G ( s ) = K G(s)=K G(s)=K
(2)微分环节: G ( s ) = s G(s)=s G(s)=s
(3)积分环节: G ( s ) = 1 s G(s)=\frac{1}{s} G(s)=s1
(4)惯性环节: G ( s ) = 1 T s + 1 G(s)=\frac{1}{Ts+1} G(s)=Ts+11
(5)一阶微分环节: G ( s ) = τ s + 1 G(s)=\tau s+1 G(s)=τs+1
(6)二阶振荡环节: G ( s ) = 1 T 2 s 2 + 2 ζ T s + 1 = ω n 2 s 2 + 2 ζ ω n s + ω n 2 G(s)=\frac{1}{T^2s^2+2\zeta Ts+1}=\frac{\omega^2_n}{s^2+2\zeta\omega_ns+\omega^2_n} G(s)=T2s2+2ζTs+11=s2+2ζωns+ωn2ωn2
(7)延时环节: G ( s ) = e − τ s G(s)=e^{-\tau s} G(s)=eτs

三、线性系统结构框图和信号流图

结构框图和信号流图都是用于描述系统的工具,表达输入输出因果关系及其运算的图。

3.1 结构框图

3.1.1 一个例子说通结构框图、微分方程、传递函数、信号

在这里插入图片描述
可以列写微分方程:
L d i d t + i 1 R + u O = u I L\frac{di}{dt}+i_1R+u_O=u_I Ldtdi+i1R+uO=uI i 1 = i − i 2 i_1=i-i_2 i1=ii2 i 2 = C 2 d u C 2 d t = R C 2 d i 1 d t i_2=C_2\frac{du_{C2}}{dt}=RC_2\frac{di_1}{dt} i2=C2dtduC2=RC2dtdi1 i = C 1 d u C 1 d t = C 1 d u O d t i=C_1\frac{du_{C1}}{dt}=C_1\frac{du_O}{dt} i=C1dtduC1=C1dtduO拉氏变换得: L s I ( s ) + R I 1 ( s ) + U O ( s ) = U I ( s ) LsI(s)+RI_1(s)+U_O(s)=U_I(s) LsI(s)+RI1(s)+UO(s)=UI(s) I 1 ( s ) = I ( s ) − I 2 ( s ) I_1(s)=I(s)-I_2(s) I1(s)=I(s)I2(s) I 2 ( s ) = R C 2 s I 1 ( s ) I_2(s)=RC_2sI_1(s) I2(s)=RC2sI1(s) I ( s ) = C 1 s U O ( s ) I(s)=C_1sU_O(s) I(s)=C1sUO(s)上述式子的结构图如下:
(1)
在这里插入图片描述
(2)
在这里插入图片描述
(3)
在这里插入图片描述

(4)
在这里插入图片描述
组合起来就是:
在这里插入图片描述
将拉氏变换后的方程整理,可以得到闭环传递函数:
Φ ( s ) = U O ( s ) U I ( s ) = 1 + R C 2 s R L C 1 C 2 s 3 + L C 1 s 2 + R ( C 1 + C 2 ) s + 1 \Phi(s)=\frac{U_O(s)}{U_I(s)}=\frac{1+RC_2s}{RLC_1C_2s^3+LC_1s^2+R(C_1+C_2)s+1} Φ(s)=UI(s)UO(s)=RLC1C2s3+LC1s2+R(C1+C2)s+11+RC2s

3.1.2 结构图的变换

1、串联一个环节,原来这个通道的传递函数就再多乘以这个环节的传递函数。如:在这里插入图片描述
x 2 ( s ) = x 1 ( s ) G 1 ( s ) , x 3 ( s ) = x 2 ( s ) G 2 ( s ) x_2(s)=x_1(s)G_1(s),x_3(s)=x_2(s)G_2(s) x2(s)=x1(s)G1(s)x3(s)=x2(s)G2(s)所以: x 3 ( s ) = x 1 ( s ) [ G 1 ( s ) G 2 ( s ) ] x_3(s)=x_1(s)[G_1(s)G_2(s)] x3(s)=x1(s)[G1(s)G2(s)]所以上图等价于:
在这里插入图片描述

2、并联一个环节,就把两者的信号相加(或相减)作为总信号。如:
在这里插入图片描述
x 2 ( s ) = x 1 ( s ) G 1 ( s ) + x 1 ( s ) G 2 ( s ) + x 1 ( s ) G 3 ( s ) = x 1 ( s ) [ G 1 ( s ) + G 2 ( s ) + G 3 ( s ) ] x_2(s)=x_1(s)G_1(s)+x_1(s)G_2(s)+x_1(s)G_3(s)=x_1(s)[G_1(s)+G_2(s)+G_3(s)] x2(s)=x1(s)G1(s)+x1(s)G2(s)+x1(s)G3(s)=x1(s)[G1(s)+G2(s)+G3(s)]所以上图等价于:
在这里插入图片描述

3、相加点向前(后)移动,其主通道除以(乘以)支路通道的传递函数。如:
在这里插入图片描述
x 3 ( s ) = [ x 1 ( s ) G 1 ( s ) + x 2 ( s ) G 2 ( s ) ] G 3 ( s ) = x 1 ( s ) G 1 ( s ) G 3 ( s ) + x 2 ( s ) G 2 ( s ) G 3 ( s ) x_3(s)=[x_1(s)G_1(s)+x_2(s)G_2(s)]G_3(s)=x_1(s)G_1(s)G_3(s)+x_2(s)G_2(s)G_3(s) x3(s)=[x1(s)G1(s)+x2(s)G2(s)]G3(s)=x1(s)G1(s)G3(s)+x2(s)G2(s)G3(s)
所以上图等价于:
在这里插入图片描述

4、分支点向前(后)移动,其主通道乘以(除以)支路通道的传递函数。如:在这里插入图片描述
x 2 ( s ) = x 1 ( s ) G 1 ( s ) G 2 ( s ) = x 1 ( s ) [ G 1 ( s ) G 2 ( s ) ] x_2(s)=x_1(s)G_1(s)G_2(s)=x_1(s)[G_1(s)G_2(s)] x2(s)=x1(s)G1(s)G2(s)=x1(s)[G1(s)G2(s)]所以上图可以等价于:在这里插入图片描述

3.2 信号流图

用节点表示变量,节点标志的变量是流向该节点的代数和,信号在支路上沿着箭头单向传递。
个人吐槽:不知是我理解的肤浅还是书上没写太多,怎么感觉信号流图跟结构框图,如同一个模子里做出来的不同点心呢。。。。。。

四、梅森增益公式

4.1 公式

具有n个前向通路的闭环系统传递函数表示为: Φ ( s ) = 1 Δ ∑ k = 1 n P k Δ k \Phi(s)=\frac{1}{\Delta}\sum^{n}_{k=1}{P_k\Delta_k} Φ(s)=Δ1k=1nPkΔk其中:
(1) Δ = 1 − ∑ L a + ∑ L b L c − ∑ L d L e L f + … … \Delta=1-\sum L_a+\sum L_bL_c-\sum L_dL_eL_f +…… Δ=1La+LbLcLdLeLf+……
∑ L a \sum L_a La:所有单独回路增益之和
∑ L b L c \sum L_bL_c LbLc:所有互不接触的两两回路增益乘积之和
∑ L d L e L f \sum L_dL_eL_f LdLeLf:所有三三互不接触回路增益乘积之和
……
(2) P k P_k Pk:从输入到输出的第k条前向通路总增益
(3) Δ k \Delta_k Δk Δ \Delta Δ中与第k条前向通路不接触的项

4.2 举个例子

以3.1.1中的结构框图为例,求闭环传递函数:
两条回路: L a = − 1 L C 1 s 2 L_a=-\frac{1}{LC_1s^2} La=LC1s21 L b = − R R L C 2 s 2 + L s L_b=-\frac{R}{RLC_2s^2+Ls} Lb=RLC2s2+LsR两条回路相交。所以:
Δ = 1 + 1 L C 1 s 2 + R R L C 2 s 2 + L s \Delta=1+\frac{1}{LC_1s^2}+\frac{R}{RLC_2s^2+Ls} Δ=1+LC1s21+RLC2s2+LsR
一条前向通路: P 1 = 1 L C 1 s 2 P_1=\frac{1}{LC_1s^2} P1=LC1s21与两条回路均相交,所以: Δ 1 = 1 \Delta_1=1 Δ1=1
由梅森增益公式: Φ ( s ) = 1 Δ ∑ k = 1 n P k Δ k = P 1 Δ 1 Δ = 1 L C 1 s 2 1 + 1 L C 1 s 2 + R R L C 2 s 2 + L s \Phi(s)=\frac{1}{\Delta}\sum^n_{k=1}{P_k\Delta_k}=\frac{P_1\Delta_1}{\Delta}=\frac{\frac{1}{LC_1s^2}}{1+\frac{1}{LC_1s^2}+\frac{R}{RLC_2s^2+Ls}} Φ(s)=Δ1k=1nPkΔk=ΔP1Δ1=1+LC1s21+RLC2s2+LsRLC1s21整理得: Φ ( s ) = R L C 2 s 2 + L s R L 2 C 1 C 2 s 4 + L 2 C 1 s 3 + R L C 2 s 2 + L s + R L C 1 s 2 = R C 2 s + 1 R L C 1 C 2 s 3 + L C 1 s 2 + R ( C 1 + C 2 ) s + 1 \Phi(s)=\frac{RLC_2s^2+Ls}{RL^2C_1C_2s^4+L^2C_1s^3+RLC_2s^2+Ls+RLC_1s^2}=\frac{RC_2s+1}{RLC_1C_2s^3+LC_1s^2+R(C_1+C_2)s+1} Φ(s)=RL2C1C2s4+L2C1s3+RLC2s2+Ls+RLC1s2RLC2s2+Ls=RLC1C2s3+LC1s2+R(C1+C2)s+1RC2s+1

总结

本文总结了自动控制原理中,对系统进行建模的一些内容,包括数学模型、微分方程与传递函数关系、零极点的意义、结构图、梅森增益公式等。对系统进行建模是去分析和设计系统的前提。

参考资料

[1] 胡寿松. 自动控制原理(第六版)[M]. 科学出版社. 2013:21-59.
[2] 混沌的矩阵. 根轨迹法之绘制根轨迹. CSDN:https://blog.csdn.net/NewYorkyan/article/details/122373333
[3] 混沌的矩阵. 拉氏变换. CSDN:https://blog.csdn.net/NewYorkyan/article/details/122194050

  • 8
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值