自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 激光雷达获取中心线 中位线 中间线 获取两边障碍物的中间线

【代码】激光雷达获取中心线 中位线 中间线 获取两边障碍物的中间线。

2024-08-30 14:30:46 295 1

原创 r: no matching function for call to ‘boost::posix_time::seconds::seconds(double&)’

编译autoware.ai出错。系统:ubuntu20.04。

2024-08-25 16:14:35 231

原创 编译报错error: ‘turn_point’ may be used uninitialized in this function [-Werror=maybe-uninitialized]

在autoware_universe编译时出错,在搜索cmakelists中的-Werror,将最高去掉重新编译。

2024-08-25 10:36:41 350

原创 `ERROR: something wrong with flag ‘logtostderr‘ in file ‘glog-master/src/logging.cc‘.

解决方法:重新编译glog。

2024-07-05 09:58:08 285

原创 kitti2bag,py 报错

【代码】kitti2bag,py 报错。

2024-04-22 22:35:35 317 1

原创 关于使用g2o对激光slam后端优化记录

虽然激光雷达精度高,但仍存在误差,更何况存在运动畸变,所以以位姿图的形式进行优化BA,效果当然不会好。edge:二元边,误差表示为,两个关键帧的位姿下的关键点对距离。BA是位姿节点+观测节点+观测误差组成的。位姿图是位姿节点+位姿节点间误差。vertex:关键帧位姿。因子图是位姿节点+因子。

2024-04-14 09:06:48 200 1

原创 slam数学补充

当M(n,n)过大意味着在数据均值的n维上变化较大,反之M(n,n)过小意味着数据在均值 的n维上变化不大。协方差矩阵的特征值意义:表示样本拟合直线的程度,越大意味着样本越偏离于特征向量,特征值为1时拟合最好。反之M(n,m)过小意味着数据在均值的n和m维上变化较小,数据在m和n轴的相关性较弱。当M(n,m)过大意味着数据在均值的n和m维上变化较大,数据在m和n轴的相关性较强。M * n = a * n (其中M为协方差矩阵吗,n为特征向量,a为特征值)迹:所有样本的每个维度和均值的差值平方和。

2024-04-06 22:55:42 283 1

原创 记录 搭载小车 运行激光slam lio-sam fast-lio2

使用imu_tools进行滤波,对/catkin_ws/src/imu_tools/imu_complementary_filter/launch/complementary_filter.launch文件进行修改,改好输入输出,再进行运行lio sam。(开始认为激光雷达和imu时间没有对齐)经过多次调试,发现将imu的频率下降到100hz就好多了(可能因为imu精度有问题,但是看起来又没问题)。最后运行lio-sam,所有设备静止下,一运行直接飘,如下图所示。解决方法:对imu原始数据进行卡尔曼滤波。

2024-01-05 17:30:07 967 3

原创 rangenet++运行 bonnetal训练 点云标签 记录

安装semantic-kitti,查看点云标签content,并修改bonnetal上的设置。安装point_labeler工具,根据readme步骤安装,并设定好格式进行标签。于bonnetal上进行训练,训练指令,更改代码生成onnx。运行rangenet,将onnx转换为trt,运作截图。准备原始点云数据,为bin格式。修改bonnetal的配准。

2023-11-10 20:50:45 434 5

原创 研究生期间工作记录

第一份代码:将faster lio加入GTSAM因子图,实现回环。23/11开始记录工作细节,总是忘记一些工作细节和之前的工作。

2023-11-06 20:53:57 305 4

原创 ubuntu18.04 RTX3060 rangnet++训练 bonnetal语义分割

bonnetal rangnet++运行记录

2023-10-19 23:10:32 1102 2

原创 faster lio 回环 加入GTSAM优化的记录

对Faster lio 加入回环、gtsam优化,在室外建图遇到的问题和过程

2023-10-15 23:50:01 1269 3

原创 ros运行D435报错解决 _ZN20ddynamic_reconfigure19DDynamicReconfigureC1ERKN3ros10NodeHandleE

解决方法卸载ddynamic-reconfigure。运行以下指令出现报错。重新编译运行既可解决。

2023-05-23 14:43:39 1695 1

原创 ubuntu18.04 安装 anaconda3 以及创建环境

ubuntu18.04 安装 anaconda3 以及创建环境

2023-02-02 10:16:30 801

原创 ORB SLAM3 ubuntu18.04 ROS 运行 段错误 (核心已转储) 踩坑及解决

ubuntu18.04 ROS 运行 ORB SLAM3 段错误 (核心已转储) 踩坑及解决

2023-01-23 11:10:03 7236 6

原创 视觉SLAM十四讲ch7 orb_self.cpp报错 段错误 (核心已转储)

视觉SLAM十四讲ch7 orb_self.cpp报错 段错误 (核心已转储)

2023-01-14 01:14:12 1074 2

原创 ROS编译D435i过程中的问题及解决

2023/01/02/ 编译D435i的ROS包出现的问题及解决方法

2023-01-02 23:07:31 3573 3

原创 视觉SLAM学习笔记

本文是个人对《视觉SLAM十四讲》的内容进行个人理解说写下的笔记 以备忘向量向量一般为列向量,用小写字母表示。向量相乘点乘为内积,可表达为以下,<a,b>为向量a、b间夹角,结果可描述为向量间投影关系。叉乘为外积,可表达如下,结果为列向量,同时该列向量垂直于向量a、b,为两个向量张成的四边形有向面积。而在上述的运算中可知,向量a等价于反对称矩阵,如下,既向量转换为矩阵的一个重要的变换,用a^表示。反对称矩阵A有以下变换AT=-A。坐标向量a(a1,a2,a3)T在基

2022-01-21 17:12:50 442

原创 关于STM32运行一些函数存在卡死并进入HardFault_Handler函数的解决方法

遇到的情况是:有一个需要运行的函数A(),需要在函数B和函数C内运行代码可如以下简单表示void A(char *buf); //一个运算量较大大的一个函数,功能是对圆弧进行解码void B(){ A(buf1);}void C(){ A(buf2);}通过DEBUG多次调试,得知无论是否buf1与buf2相同,在运行后函数B后,无异常,但是运行函数C却卡死并进入HardFault_Handler函数。HardFault_Handler函数如下void HardFault_Ha

2022-01-09 16:19:48 3610

原创 ROS串口代码换行符识别订阅者发布者

首先串口既串行接口,英语翻译为serial port,固简称为sp在已创建好的ROS工作空间中,既在目录catkin_ws/src下输入指令`catkin_create_pkg serial_port roscpp rospy serial //创建包及其依赖关系cd serial_port/src //进入代码区touch serial_port.cpp //创建代码文件在serial_port.cpp下#include <ros/ros.h>#i

2021-07-14 22:44:23 607

原创 stm32开发3D打印机(一)——介绍(已完成)

如何运用stm32开发3D打印机

2020-08-12 22:24:49 15542 10

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除