ubuntu18.04 RTX3060 rangnet++训练 bonnetal语义分割

代码链接: https://github.com/PRBonn/lidar-bonnetal
安装anaconda环境为
CUDA 11.0(11.1也可以)

anaconda环境如下

numpy==1.17.2 
torchvision==0.2.2
matplotlib==2.2.3
tensorflow==1.13.1
scipy==0.19.1
pytorch==1.7.1
vispy==0.5.3
opencv_python==4.1.0.25
opencv_contrib_python==4.1.0.25
Pillow==6.1.0
PyYAML==5.1.1

修改anaconda,换源

gedit ~/.condarc 

更换文件信息

channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.aliyun.com/anaconda/pkgs/main
  - http://mirrors.aliyun.com/anaconda/pkgs/r
  - http://mirrors.aliyun.com/anaconda/pkgs/msys2
custom_channels:
  conda-forge: http://mirrors.aliyun.com/anaconda/cloud
  msys2: http://mirrors.aliyun.com/anaconda/cloud
  bioconda: http://mirrors.aliyun.com/anaconda/cloud
  menpo: http://mirrors.aliyun.com/anaconda/cloud
  pytorch: http://mirrors.aliyun.com/anaconda/cloud
  simpleitk: http://mirrors.aliyun.com/anaconda/cloud

安装指令

conda install numpy==1.17.2   Pillow==6.1.0 PyYAML==5.1.1 matplotlib==2.2.3 vispy==0.5.3

其中pytorch、torchvision、torchaudio、一起安装。指令如下

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

安装和查看python opencv版本 指令

pip install opencv-python==4.1.0.25
pip install opencv-contrib-python==4.1.0.25

python
import cv2
cv2.__version__
或者
conda list

下载数据集链接
官方地址:http://www.semantic-kitti.org/dataset.html#overview

其中80G激光雷达数据的链接:https://pan.baidu.com/s/1OjoWrwE8xIrCmYO2hujJNw 提取码:6381
标签数据在官方地址第三个的179M。

在这里插入图片描述
参考博客:https://blog.csdn.net/BIT_HXZ/article/details/123539476
将80G的激光雷达数据文件和标签文件放在一起,(只取前10个数据)如下图所示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

运行训练指令如下

cd xx/xx/xx/semantic
mkdir log
./train.py -d dataset/ -ac config/arch/darknet21.yaml -l log

运行可能有bug,修改文件 lidar-bonnetal-master/train/tasks/semantic/dataset/kitti/parser.py
将unproj_xyz[:unproj_n_points] = torch.from_numpy(scan.points)
改为unproj_xyz[:unproj_n_points] = torch.Tensor(scan.points)

有好几处
torch.from_numpy改为torch.Tensor

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值