一个矩阵乘以一个向量是零向量,那么这个矩阵一定是零矩阵吗?

文章讨论了当矩阵A乘以向量β等于零向量时,矩阵A是否一定是零矩阵的问题。在两种情况下进行了分析:1) 若对任意的β都满足条件,则A必须是零矩阵;2) 当β固定时,A不一定是零矩阵,因为当矩阵A的秩小于n时,存在非零向量β使得Aβ=0成立。结论指出,在固定β的情况下,不能仅凭Aβ=0推断A是零矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如题,假如矩阵 A A A是nn的方阵,向量 β \beta β是一个n1的向量,如果有 A β = 0 A\beta=\textbf{0} Aβ=0,那么 A A A是零矩阵吗?

case 1: 如果要求对任意的 β \beta β,都有 A β

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值