Eigenfunctions and Eigenvalues
算子
A
A
A的特征函数是一个函数
f
f
f,
A
A
A对
f
f
f的应用后得到
f
f
f乘以一个常数。
A
f
=
k
f
A f = k f
Af=kf
k是一个常数,叫做特征值。
易证,如果
A
A
A是一个带有一个特征函数
g
g
g的线性算子,那么
λ
g
\lambda g
λg也是
A
A
A的一个特征函数。
线性算子
线性算子,我当前姑且作为线性映射来看。因为从我获得的资料来看,有些书将线性算子与线性映射是等价的,但是wiki似乎另有说法。
f : V → W f:V \rightarrow W f:V→W 被称为是线性映射,如果对于 V V V中任何两个向量 x x x和 y y y与任何标量 a a a,满足下列两个条件:
可加性:
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
f(x+y)=f(x)+f(y)
f(x+y)=f(x)+f(y)
齐次性:
f
(
a
x
)
=
a
f
(
x
)
f(ax)=af(x)
f(ax)=af(x)
这等价于要求对于任何向量
x
1
,
…
,
x
m
x_{1},\ldots ,x_{m}
x1,…,xm和标量
a
1
,
…
,
a
m
a_{1},\ldots ,a_{m}
a1,…,am 方程
f
(
a
1
x
1
+
⋯
+
a
m
x
m
)
=
a
1
f
(
x
1
)
+
⋯
+
a
m
f
(
x
m
)
f(a_{1}x_{1}+\cdots +a_{m}x_{m})=a_{1}f(x_{1})+\cdots +a_{m}f(x_{m})
f(a1x1+⋯+amxm)=a1f(x1)+⋯+amf(xm)
成立。