Eigenfunctions 特征函数 与 Eigenvalues

Eigenfunctions and Eigenvalues

算子 A A A的特征函数是一个函数 f f f A A A f f f的应用后得到 f f f乘以一个常数。
A f = k f A f = k f Af=kf

k是一个常数,叫做特征值。
易证,如果 A A A是一个带有一个特征函数 g g g的线性算子,那么 λ g \lambda g λg也是 A A A的一个特征函数。

线性算子
线性算子,我当前姑且作为线性映射来看。因为从我获得的资料来看,有些书将线性算子与线性映射是等价的,但是wiki似乎另有说法。

f : V → W f:V \rightarrow W f:VW 被称为是线性映射,如果对于 V V V中任何两个向量 x x x y y y与任何标量 a a a,满足下列两个条件:

可加性: f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y) f(x+y)=f(x)+f(y)
齐次性: f ( a x ) = a f ( x ) f(ax)=af(x) f(ax)=af(x)
这等价于要求对于任何向量 x 1 , … , x m x_{1},\ldots ,x_{m} x1,,xm和标量 a 1 , … , a m a_{1},\ldots ,a_{m} a1,,am 方程
f ( a 1 x 1 + ⋯ + a m x m ) = a 1 f ( x 1 ) + ⋯ + a m f ( x m ) f(a_{1}x_{1}+\cdots +a_{m}x_{m})=a_{1}f(x_{1})+\cdots +a_{m}f(x_{m}) f(a1x1++amxm)=a1f(x1)++amf(xm)
成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值