几何拓扑不变量——欧拉示性数

本文探讨了几何与拓扑的区别,重点讲解了欧拉示性数的概念及其计算方式,通过实例展示了欧拉示性数作为不变量的特点,并讨论了其在不同形状上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

综述

几何关注的是位置信息,拓扑关注的是位置之间的连接关系。
人们喜欢从手感上,说前者是硬的,后者是软的。
欧拉示性数X计算为:
X = V + F - E
如果:genus(亏格)设为G
那么有
X = V+F-E = 2 - 2G

几个特点

  • 对于闭合多面体:以四面体为例:4 + 4 - 6 = 2 可以去检测所有的这样的形状都是满足该数值。这就是为什么欧拉示性数叫做不变量;
  • 对于一个平面三角形:可以计算是 3+1-3 =1;
  • 欧拉示性数越大,亏格越小;
  • 如果在原来的face延伸出一个edge(只是延伸edge)的话,欧拉示性数不变;
  • 如果延伸出一个edge并且增加了一个新的环那么欧拉示性数X会+1;
  • 对平面的细分不会影响欧拉示性数;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值