拉格朗日乘数法

拉格朗日函数用于约束优化问题。约束优化问题简而言之就是在有一堆约束 Σ i = 1 g i ( x ) \Sigma_{i=1} g_i(x) Σi=1gi(x)的情况下求目标函数 f ( x ) f(x) f(x)的问题,说起来很抽象,直接来点例子看比较直观。

例1. 求 f ( x , y , z ) = x y z f(x,y,z)=xyz f(x,y,z)=xyz在条件 1 x + 1 y + 1 z = 1 a   ( x , y , z , a > 0 ) \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\ (x,y,z,a>0) x1+y1+z1=a1 (x,y,z,a>0)下的最小值。

直接构造拉格朗日函数 L ( x , y , z , λ ) = f ( x , y , z ) + λ g ( x ) = x y z + λ ( 1 x + 1 y + 1 z − 1 a ) L(x,y,z,\lambda)=f(x,y,z)+\lambda g(x)= \\ xyz+\lambda (\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{a}) L(x,y,z,λ)=f(x,y,z)+λg(x)=xyz+λ(x1+y1+z1a1)

然后 L ( x , y , z , a ) L(x,y,z,a) L(x,y,z,a)分别对 x , y , z , a x,y,z,a x,y,z,a求导,可的一系列方程式:

∂ L ∂ x = y z − λ x 2 = 0 ∂ L ∂ y = x z − λ y 2 = 0 ∂ L ∂ z = x y − λ z 2 = 0 ∂ L ∂ λ = 1 x + 1 y + 1 z − 1 a = 0 \frac{\partial L}{\partial x}=yz-\frac{\lambda}{x^2}=0 \\ \frac{\partial L}{\partial y}=xz-\frac{\lambda}{y^2}=0\\ \frac{\partial L}{\partial z}=xy-\frac{\lambda}{z^2}=0\\ \frac{\partial L}{\partial \lambda}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{a}=0 xL=yzx2λ=0yL=xzy2λ=0zL=xyz2λ=0λL=x1+y1+z1a1=0

然后将带有 λ \lambda λ的挪到右边并且把分母乘过去:
x 2 y z = λ , x y 2 z = λ , x y z 2 = λ x^2yz=\lambda,xy^2z=\lambda, xyz^2=\lambda x2yz=λ,xy2z=λ,xyz2=λ
再依次相除,并代入 ∂ L ∂ λ \frac{\partial L}{\partial \lambda} λL中,可得 x = y = z = 3 a x=y=z=3a x=y=z=3a

如果还是不太懂可以再看一个例子:
例2. u = x y + 2 y z u=xy+2yz u=xy+2yz在约束条件 x 2 + y 2 + z 2 = 10 x^2+y^2+z^2=10 x2+y2+z2=10的最大最小值。

直接构造拉格朗日函数:
L ( x , y , z , λ ) = x y + 2 y z + λ ( x 2 + y 2 + z 2 − 10 ) L(x,y,z,\lambda)=xy+2yz+\lambda(x^2+y^2+z^2-10) L(x,y,z,λ)=xy+2yz+λ(x2+y2+z210)

分别求偏导:
∂ L ∂ x = y + 2 λ x = 0 ∂ L ∂ y = x + 2 z + 2 λ y = 0 ∂ L ∂ z = 2 y + 2 λ z = 0 \frac{\partial L}{\partial x}=y+2\lambda x=0 \\ \frac{\partial L}{\partial y}=x+2z+2\lambda y =0\\ \frac{\partial L}{\partial z}=2y+2\lambda z=0 xL=y+2λx=0yL=x+2z+2λy=0zL=2y+2λz=0

这里是一个标准的线性方程组的形式,可以直接行列式求解,得到 λ = 5 2 , − 5 2 , 0 \lambda=\frac{\sqrt{5}}{2}, -\frac{\sqrt{5}}{2}, 0 λ=25 ,25 ,0,分别带回去, λ = 5 2 \lambda=\frac{\sqrt{5}}{2} λ=25 可得驻点 ( 1 , − 5 , 2 ) , ( − 1 , 5 , − 2 ) (1,-\sqrt{5},2),(-1,\sqrt{5},-2) (15 2)(15 ,2),他们两个对应一个极值 u = − 5 5 u=-5\sqrt{5} u=55 ,而 λ = − 5 2 \lambda=-\frac{\sqrt{5}}{2} λ=25 可得驻点 ( 1 , 5 , 2 ) , ( − 1 , − 5 , − 2 ) (1,\sqrt{5},2),(-1,-\sqrt{5},-2) (1,5 ,2),(1,5 ,2),代回原式可得极值 5 5 5\sqrt{5} 55 。当 λ = 0 \lambda=0 λ=0, 可得驻点 ( 2 2 , 0 , − 2 ) , ( − 2 2 , 0 , 2 ) (2\sqrt{2},0,-\sqrt{2}),(-2\sqrt{2},0,\sqrt{2}) (22 ,0,2 ),(22 ,0,2 ),可得极值为0。 所以最大值最小值就显而易见。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值