实战精选 | 在NPU上运行BGE embedding模型,提升RAG整体性能

点击蓝字

关注我们,让开发变得更有趣

作者 | 杨亦诚

排版 | 李擎

介绍

BGE全称是BAAI General Embedding,即北京智源人工智能研究院通用Embedding模型,它可以将任意文本映射到低维的稠密向量,在文本向量化任务中得到了广泛的应用。可以看到在C-MTEB中文排行榜中,BGE系列模型的综合能力名列前茅,而在MTEB排行榜所有小于500MB的模型列表中,基于相同模型结构的BGE英文版本bge-large-en-v1.5的综合能力也能位列前五。

d48d50163ffbe7798b5c36d850fea753.png

图:BGE模型性能指标­

而作为英特尔AIPC架构中专用的AI处理器,NPU相较于CPU拥有更高的算力,并能以更低的能耗来运行深度学习模型。在类似RAG等的复杂任务中,我们往往需要利用Embedding, LLM, Ranker等多个模型­协同处理数据,通过将Embedding模型部署在NPU上,可以进一步优化其性能和能耗。OpenVINO™作为目前唯一可以同时在Intel CPU, GPU以及NPU平台上部署AI模型的工具套件,提供了一套通用API接口函数,方便开发者灵活地调度AIPC上的异构资源。本文将分享如何利用 OpenVINO™ 工具套件在NPU上部署BGE Embedding模型。

示例完整代码:https://github.com/openvinotoolkit/openvino_notebooks/tree/latest/notebooks/llm-rag-langchain

OpenVINO™

模型转换

利用Optimum-intel命令行工具,我们便可以非常快速将BGE embedding模型导出为 OpenVINO™ 的IR格式文件。这里只需要指定模型的Hugging Face ID或是本地路径,以及任务类别为feature-extraction。

optimum-cli export openvino --model bge-large-zh-v1.5 --task feature-extraction bge-small-zh-v1.5

当以上命令执行完毕后,IR格式模型以及对应的tokenizer文件将被保存在bge-large-zh-v1.5目录下:

├── config.json

├── openvino_model.bin

├── openvino_model.xml

├── special_tokens_map.json

├── tokenizer_config.json

├── tokenizer.json

└── vocab.txt

由于 NPU 中的所有数据都将被转到到 fp16 精度进行计算,而 BGE Embedding 模型的原始精度是FP32,因此在FP32转FP16的过程中部分超过FP16表达范围的值会溢出,例如一个极小的负数,BGE Embedding也同样存在这个问题,所以这里我们会将这种类型的 Tensor 利用 OpenVINO™ 的 Transformation pass 机制进行替换。

e3034636e680080d7e3297ee4b40348e.png

OpenVINO™

模型部署

接下来就是推理任务部署了,由于截至发文前NPU尚未完全支持动态输入的模型,因此我们在读取BGE模型后,需要将其每一个input shape进行固定,此外在处理原始文本输入的时候,也需要通过加Padding的方式,统一文本长度以匹配模型的input shape。这里我们以LangChain中集成的OpenVINO™ Embedding模型为例:

·  通过Tokenizer处理输入字符串

首先判断模型的input shape是否为静态的,如果是静态的,则基于其支持的向量长度,通过BGE模型自带的的Tokenizer进行padding,也就是对原始input token外的内容用特殊字符进行补足,直到满足模型input shape长度。

length = self.ov_model.request.inputs[0].get_partial_shape()[1]
if length.is_dynamic:
    features = self.tokenizer(
        sentences_batch, padding=True, truncation=True, return_tensors="pt"
    )
else:
    features = self.tokenizer(
        sentences_batch,
        padding="max_length",
        max_length=length.get_length(),
        truncation=True,
        return_tensors="pt",
     )

· 对模型进行reshape

在调用LangChain中的OpenVINOTM embedding对象时,我们需要指定"compile": False,然后将模型对象的input tensor进行reshape,固定其batch size和token长度,最后重新compile编译。

embedding.ov_model.reshape(1, 512)
embedding.ov_model.compile()

OpenVINO™

测试对比

接下来我们以CPU执行FP32的动态输入模型的结果为基准,比较NPU运行静态输入模型的结果,以此验证模型在NPU上执行的准确性。

在开始测试前,我们需要确保当前NPU的驱动版本为最新,大家可以通过以下链接下载最新的NPU驱动,https://www.intel.cn/content/www/cn/zh/download/794734/intel-npu-driver-windows.html,本次测试中使用的驱动版本为:32.0.100.2408。

这里我们也可以直接使用LangChain中的OpenVINOBgeEmbeddings模块进行测试。具体代码如下

from langchain_community.embeddings import OpenVINOBgeEmbeddings


embedding_model_name = npu_embedding_dir if USING_NPU else embedding_model_id.value
batch_size = 1 if USING_NPU else 4
embedding_model_kwargs = {"device": embedding_device.value, "compile": False}
encode_kwargs = {
    "mean_pooling": embedding_model_configuration["mean_pooling"],
    "normalize_embeddings": embedding_model_configuration["normalize_embeddings"],
    "batch_size": batch_size,
}


embedding = OpenVINOBgeEmbeddings(
    model_name_or_path=embedding_model_name,
    model_kwargs=embedding_model_kwargs,
    encode_kwargs=encode_kwargs,
)
if USING_NPU:
    embedding.ov_model.reshape(1, 512)
embedding.ov_model.compile()


text = "This is a test document."
embedding_result = embedding.embed_query(text)
embedding_result[:3]

该示例中我们需要将NPU上模型输入batch size限定为1,并比较BGE embedding模型在执行相同输入文本时的结果与误差。

· NPU输出embedding向量的前三位:

[-0.031266361474990845, 0.014588160440325737, 0.015173986554145813]

· CPU输出embedding向量的前三位:

[-0.031454551964998245, 0.014539799652993679, 0.015147135592997074]

· NPU与CPU输出的embedding向量误差总和:

0.04240982816008909

· NPU与CPU输出的embedding向量误差均值:

8.2831695625174e-05

可以看到虽然NPU上的BGE模型使用了Padding方式来匹配静态输入,但相较CPU上的运行结果,误差还是在一个比较小的范围内,可以直接代替CPU来提升性能,并优化能耗。

OpenVINO™

总结

本文为NPU设备部署BGE Embedding模型提供了一种参考路径。通过将Embedding模型部署在NPU上,可以在不影响模型输出准确性的前提下,极大优化模型的性能和能耗表现,进一步提升RAG等相关应用的综合能力。

参考资料:

1. C_MTEB Benchmark:https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB

2. OpenVINOTM Transformation pass:

https://blog.openvino.ai/blog-posts/large-language-model-graph-customization-with-openvino-tm-transformations-api

3. OpenVINO embedding in LangChain:

https://python.langchain.com/v0.2/docs/integrations/text_embedding/openvino/

OpenVINO™

--END--

点击下方图片,让我们一起成为“Issues 猎手”,共创百万用户开源生态!
你也许想了解(点击蓝字查看)⬇️➡️ OpenVINO™ 2024.2 发布--推出LLM专属API !服务持续增强,提升AI生成新境界➡️ OpenVINO™ 助力 Qwen 2 —— 开启大语言模型新时代➡️ 揭秘XPU架构下AIGC的推理加速艺术--AI PC 新纪元:将 AI 引入 NPU,实现快速低功耗推理➡️ 隆重介绍 OpenVINO™ 2024.0: 为开发者提供更强性能和扩展支持➡️ 隆重推出 OpenVINO 2023.3 ™ 最新长期支持版本➡️ OpenVINO™ 2023.2 发布:让生成式 AI 在实际场景中更易用➡️ 开发者实战 | 介绍OpenVINO™ 2023.1:在边缘端赋能生成式AI➡️ 5周年更新 | OpenVINO™  2023.0,让AI部署和加速更容易➡️ OpenVINO™5周年重头戏!2023.0版本持续升级AI部署和加速性能➡️ 开发者实战系列资源包来啦!
扫描下方二维码立即体验 
OpenVINO™ 工具套件 2024.1

点击 阅读原文 获取最新版OpenVINO™2024.2

评论区已开放,欢迎大家留言评论!

文章这么精彩,你有没有“在看”?

  • 10
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值