你的BGE模型用对了吗?

本文介绍了BGE模型在RAG场景中的应用,强调了embedding模型需要指令、关注分数排序而非绝对值以及reranker的重要性。使用BGE时,应在查询中添加指令以提高效果,注意相似度分数的排序意义,以及根据需求考虑是否使用reranker进行文档重排。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

众所周知Embedding模型可以将任何文本映射到低维密集向量,该向量可用于检索、分类、聚类或语义搜索等任务,也可以用于LLM的矢量数据库。

智源研究院开源的BGE(BAAI general embedding)模型已经屠榜多时了,且有力推动了知识库检索、聚类、分类等多种下游场景的发展。尤其是在大模型可快速落地的RAG(Retrieval Augmented Generation检索增强生成)场景,用好它显得尤为重要。但不同于其他类似的通用embedding模型,如果有些注意事项被忽视了,可能会使最终效果打些折扣。以下是实际应用BGE时应注意的3个要点。

1、embedding模型也需要指令了?

如果需要搜索与查询相关的段落,建议在查询中添加指令。项目官网建议在RAG场景,对短查询加上指令来获得其向量表示。通俗解释就是:在使用一个“短查询/问题”从知识库中查取相关的长文本时,建议给短查询加上指令。加粗提示:决定是否要加指令的最好办法是在具体任务下比较加和不加的表现。在所有场景下,都没有必要对文档、段落等长文本添加指令。代码示例如下:

from sentence_transformers import SentenceTransformer
queries = [&
<think>好的,我现在要解决的问题是用户询问如何在Ollama中安装BGE模型。首先,我需要明确Ollama是什么以及它支持的模型类型。Ollama是一个本地运行大型语言模型的工具,通常支持GGUF或GGML格式的模型BGE模型(BAAI General Embedding)是北京智源人工智能研究院开发的文本嵌入模型,常用于生成文本向量。 接下来,我需要确认BGE模型是否直接支持Ollama。根据已有的知识,Ollama的官方模型库可能没有直接列出BGE模型。用户可能需要手动配置。这时候需要查看用户提供的引用资料,特别是引用[2]中提到使用Ollama和LangChain构建知识图谱,引用[3]提到连接Hugging Face加载预训练模型,这可能涉及下载模型文件并配置本地服务。 步骤可能包括:1. 从Hugging Face下载BGE模型文件,如GGUF格式;2. 创建Modelfile定义模型;3. 使用Ollama命令创建和运行模型。同时需要注意依赖项的安装,如引用[3]提到的正确安装依赖包,避免版本冲突。 需要验证这些步骤是否正确,是否存在潜在的坑,比如模型格式是否正确、路径是否正确、Ollama是否支持该格式。如果用户遇到问题,可能需要建议他们检查模型文件路径、日志错误,或者尝试不同的模型版本。同时,可以建议结合LangChain等工具使用,如引用[2]中的例子。</think>要在Ollama中安装BGE模型,需通过自定义模型配置实现。以下是具体步骤: ### 步骤说明 1. **获取BGE模型文件** - 从Hugging Face下载BGE模型的GGUF格式文件,例如`bge-small-en-v1.5-q4_0.gguf` - 使用命令: ```bash wget https://huggingface.co/TheBloke/bge-small-en-v1.5-GGUF/resolve/main/bge-small-en-v1.5-q4_0.gguf ``` 2. **创建Modelfile** - 新建`Modelfile`文件,添加以下内容: ```dockerfile FROM ./bge-small-en-v1.5-q4_0.gguf PARAMETER num_ctx 2048 ``` 3. **构建并运行模型** - 执行Ollama构建命令: ```bash ollama create bge -f Modelfile ollama run bge ``` - 成功后即可通过API调用该模型[^2][^3] ### 注意事项 - 模型文件需与Modelfile在同一目录 - 若出现版本冲突,按引用[3]建议重新安装依赖: ```bash pip install -r requirements.txt --no-deps ``` ### 验证安装 ```python from langchain_community.embeddings import OllamaEmbeddings embeddings = OllamaEmbeddings(model="bge") print(embeddings.embed_query("测试文本")) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐的打字员

谢谢打赏~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值