基于多新息卡尔曼滤波算法估算锂离子电池SOC,并与EKF算法进行对比分析,结果表明,多新息卡尔曼滤波算法MI-EKF算法具有更高的估计精度与鲁棒性。
ID:2369725176743817
BMS算法爱好者
基于多新息卡尔曼滤波算法估算锂离子电池SOC,并与EKF算法进行对比分析,结果表明,多新息卡尔曼滤波算法MI-EKF算法具有更高的估计精度与鲁棒性。
摘要:
随着电动车和可再生能源的迅速发展,锂离子电池作为一种重要的储能装置得到了广泛应用。而针对锂离子电池中的状态估计问题,多新息卡尔曼滤波算法成为研究的热点之一。本文基于多新息卡尔曼滤波算法,对锂离子电池的SOC进行估算,并将其与传统的EKF算法进行对比分析。研究结果表明,多新息卡尔曼滤波算法MI-EKF具有更高的估计精度与鲁棒性,为锂离子电池SOC估计提供了一种有效的解决方案。
一、引言
随着全球对环境保护和可再生能源的重视,电动车市场的快速崛起以及太阳能、风能等可再生能源的快速发展,电池作为一种重要的储能装置,备受关注。锂离子电池作为一种高能量密度、低自放电率、长寿命的电池类型,成为电动车、储能系统等领域的主流选择。然而,准确估计锂离子电池的状态,特别是电池的剩余容量(SOC)是保证电池性能和安全的关键。因此,开发一