基于自适应卡尔曼滤波算法的锂离子电池荷电状态估计及参数辨识

基于自适应卡尔曼滤波算法估计锂离子电池荷电状态SOC:
1、首先采用遗忘因子最小二乘法辨识锂离子电池参数
2、将辨识的参数“自动“代入到AEKF算法中,实现锂离子电池SOC的估算
程序已将遗忘因子最小二乘法(fFRLS)与自适应卡尔曼滤波算法封装,直接运行主程序,即可一步实现电池参数辩识与Soc估算

ID:61150725172187156

BMS算法爱好者


基于自适应卡尔曼滤波算法估计锂离子电池荷电状态SOC

锂离子电池作为一种重要的能量存储设备,广泛应用于各个领域。然而,准确估计锂离子电池的荷电状态(SOC)一直以来都是一个具有挑战性的问题。SOC的准确估计对于电池的性能评估、安全控制以及实际应用均具有重要意义。本文基于自适应卡尔曼滤波算法,尝试通过参数辨识与SOC估算方法,提高电池SOC的精确度和稳定性。

首先,我们采用遗忘因子最小二乘法对锂离子电池参数进行辨识。遗忘因子最小二乘法是一种常用的辨识方法,通过对电池的测量数据进行处理和分析,可以获得电池的某些特性参数。该方法结合了最小二乘法与遗忘因子方法的优点,能够在较短的时间内获取准确的参数估计结果。

接下来&#

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值