基于自适应卡尔曼滤波算法估计锂离子电池荷电状态SOC:
1、首先采用遗忘因子最小二乘法辨识锂离子电池参数
2、将辨识的参数“自动“代入到AEKF算法中,实现锂离子电池SOC的估算
程序已将遗忘因子最小二乘法(fFRLS)与自适应卡尔曼滤波算法封装,直接运行主程序,即可一步实现电池参数辩识与Soc估算
ID:61150725172187156
BMS算法爱好者
基于自适应卡尔曼滤波算法估计锂离子电池荷电状态SOC
锂离子电池作为一种重要的能量存储设备,广泛应用于各个领域。然而,准确估计锂离子电池的荷电状态(SOC)一直以来都是一个具有挑战性的问题。SOC的准确估计对于电池的性能评估、安全控制以及实际应用均具有重要意义。本文基于自适应卡尔曼滤波算法,尝试通过参数辨识与SOC估算方法,提高电池SOC的精确度和稳定性。
首先,我们采用遗忘因子最小二乘法对锂离子电池参数进行辨识。遗忘因子最小二乘法是一种常用的辨识方法,通过对电池的测量数据进行处理和分析,可以获得电池的某些特性参数。该方法结合了最小二乘法与遗忘因子方法的优点,能够在较短的时间内获取准确的参数估计结果。
接下来&#