Gram-Schmidt orthogonalization 格拉姆-施密特正交化

Gram-Schmidt orthogonalization 格拉姆-施密特正交化

Gram-Schmidt orthogonalization 格拉姆-施密特正交化

在空间 S k \mathcal{S}^k Sk中,向量组 α 1 \alpha_1 α1, α 2 \alpha_2 α2, …, α k \alpha_k αk 线性无关,寻找一组正交向量基 β 1 \beta_1 β1, β 2 \beta_2 β2,…, β k \beta_k βk, 使得其与向量组 α 1 \alpha_1 α1, α 2 \alpha_2 α2, …, α k \alpha_k αk等价。

β 1 = α 1 , \beta_1 = \alpha_1, β1=α1,
β 2 = α 2 − ⟨ α 2 , β 1 ⟩ ⟨ β 1 , β 1 ⟩ β 1 , \beta_2 = \alpha_2 - \frac{\langle \alpha_2,\beta_1\rangle}{\langle\beta_1,\beta_1\rangle}\beta_1, β2=α2β1,β1α2,β1β1,
β 3 = α 3 − ⟨ α 3 , β 1 ⟩ ⟨ β 1 , β 1 ⟩ β 1 − ⟨ α 3 , β 2 ⟩ ⟨ β 2 , β 2 ⟩ β 2 \beta_3 = \alpha_3 - \frac{\langle \alpha_3,\beta_1\rangle}{\langle\beta_1,\beta_1\rangle}\beta_1- \frac{\langle \alpha_3,\beta_2\rangle}{\langle\beta_2,\beta_2\rangle}\beta_2 β3=α3β1,β1α3,β1β1β2,β2α3,β2β2

β k = α k − ⟨ α k , β 1 ⟩ ⟨ β 1 , β 1 ⟩ β 1 − ⟨ α k , β 2 ⟩ ⟨ β 2 , β 2 ⟩ β 2 − . . . − ⟨ α k , β k − 1 ⟩ ⟨ β k − 1 , β k − 1 ⟩ β k − 1 \beta_k = \alpha_k - \frac{\langle \alpha_k,\beta_1\rangle}{\langle\beta_1,\beta_1\rangle}\beta_1- \frac{\langle \alpha_k,\beta_2\rangle}{\langle\beta_2,\beta_2\rangle}\beta_2-...-\frac{\langle \alpha_k,\beta_{k-1}\rangle}{\langle\beta_{k-1},\beta_{k-1}\rangle}\beta_{k-1} βk=αkβ1,β1αk,β1β1β2,β2αk,β2β2...βk1,βk1αk,βk1βk1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值