范数 norm

Absolute-value norm

If x x x is one-dimensional vector spaces formed by the real or complex numbers, then
∥ x ∥ = ∣ x ∣ \left\|x\right\|=\left|x\right| x=x

ℓ 1 \ell_1 1-范数( ℓ 1 \ell_1 1-norm)

∥ x ∥ 1 : = ∑ i = 1 n ∣ x i ∣ . {\displaystyle \left\|{\boldsymbol {x}}\right\|_{1}:=\sum _{i=1}^{n}\left|x_{i}\right|.} x1:=i=1nxi.

Euclidean norm

On the n-dimensional Euclidean space R n \mathbb{R}^n Rn, x = { x 1 , . . . , x n } \boldsymbol {x}=\{x_1,...,x_n\} x={x1,...,xn}, the Euclidean norm is
∥ x ∥ 2 : = x 1 2 + ⋯ + x n 2 : = x x T . {\displaystyle \left\|{\boldsymbol {x}}\right\|_{2}:={\sqrt {x_{1}^{2}+\cdots +x_{n}^{2}}}:=\sqrt{\boldsymbol {x}\boldsymbol {x}^T}.} x2:=x12++xn2 :=xxT .
Which is also called ℓ 2 \ell_2 2-norm.

ℓ p {\displaystyle \ell _{p}} p-norm

Let p ≥ 1 be a real number. The ℓ p \ell {p} p-norm of vector x = ( x 1 , … , x n ) {\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{n})} x=(x1,,xn) is
∥ x ∥ p : = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p . \left\|\mathbf {x} \right\|_{p}:={\bigg (}\sum _{i=1}^{n}\left|x_{i}\right|^{p}{\bigg )}^{1/p}. xp:=(i=1nxip)1/p.

uniform norm ( ℓ ∞ \ell_{\infty} -norm)

In mathematical analysis, the uniform norm (or sup norm) assigns to real- or complex-valued bounded functions f f f defined on a set S the non-negative number
∥ f ∥ ∞ = ∥ f ∥ ∞ , S = sup ⁡ {   ∣ f ( x ) ∣ : x ∈ S   } . {\displaystyle \|f\|_{\infty }=\|f\|_{\infty ,S}=\sup \left\{\,\left|f(x)\right|:x\in S\,\right\}.} f=f,S=sup{f(x):xS}.
This norm is also called the supremum norm, the Chebyshev norm, the infinity norm, or, when the supremum is in fact the maximum, the max-norm.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值