Q-Learning中的Q值为何会被过估计?(即Double-DQN解决了什么问题)

图(1)

由图(1),在马尔科夫决策过程中:
公式(1)

公式(2)

由公式(1)和公式(2),可以简写成v(s) = E[q(s, a)],q(s, a) = E[r + v(s’)],合并得到v(s) = E[r + v(s’)]和q(s, a) = E[r + E[q(s’, a’)]], 即q值的更新是根据下个状态q值的均值来更新的,并不是通过下个状态最大的q值来更新的。

再来看Q-Learning更新Q值的公式:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘长风RL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值