神经网络微调技术全解(03)-Prompt Tuning全面解析

Prompt Tuning是一种旨在通过优化输入文本中的提示来引导大型预训练语言模型(如GPT-3、T5等)在特定任务上表现更好的微调技术。它是一种无需修改模型内部参数的轻量级微调方法,特别适用于处理不同任务或领域的情境。

1. 背景

在传统的全参数微调中,所有模型参数都会根据特定任务的数据进行微调。虽然这种方法可以使模型更好地适应任务,但它的计算成本高,并且在多任务场景下,需要为每个任务存储和管理不同的模型版本。

Prompt Tuning则采用了一种更为高效的方法,通过优化少量提示(Prompt)来引导模型完成任务,避免了对模型全部参数的修改。

2. 核心思想

Prompt Tuning的核心思想是将任务信息嵌入到输入文本中,而不是依赖模型的参数调整。通过优化提示,模型可以更好地理解任务上下文,并生成与任务相关的输出。提示的设计与优化成为模型表现的关键。

3. Prompt Tuning的实现机制
3.1 提示设计
  • 静态提示(Fixed Prompts)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值