Prompt Tuning是一种旨在通过优化输入文本中的提示来引导大型预训练语言模型(如GPT-3、T5等)在特定任务上表现更好的微调技术。它是一种无需修改模型内部参数的轻量级微调方法,特别适用于处理不同任务或领域的情境。
1. 背景
在传统的全参数微调中,所有模型参数都会根据特定任务的数据进行微调。虽然这种方法可以使模型更好地适应任务,但它的计算成本高,并且在多任务场景下,需要为每个任务存储和管理不同的模型版本。
Prompt Tuning则采用了一种更为高效的方法,通过优化少量提示(Prompt)来引导模型完成任务,避免了对模型全部参数的修改。
2. 核心思想
Prompt Tuning的核心思想是将任务信息嵌入到输入文本中,而不是依赖模型的参数调整。通过优化提示,模型可以更好地理解任务上下文,并生成与任务相关的输出。提示的设计与优化成为模型表现的关键。
3. Prompt Tuning的实现机制
3.1 提示设计
- 静态提示(Fixed Prompts)