神经网络微调技术全解(03)-Prompt Tuning全面解析

Prompt Tuning是一种旨在通过优化输入文本中的提示来引导大型预训练语言模型(如GPT-3、T5等)在特定任务上表现更好的微调技术。它是一种无需修改模型内部参数的轻量级微调方法,特别适用于处理不同任务或领域的情境。

1. 背景

在传统的全参数微调中,所有模型参数都会根据特定任务的数据进行微调。虽然这种方法可以使模型更好地适应任务,但它的计算成本高,并且在多任务场景下,需要为每个任务存储和管理不同的模型版本。

Prompt Tuning则采用了一种更为高效的方法,通过优化少量提示(Prompt)来引导模型完成任务,避免了对模型全部参数的修改。

2. 核心思想

Prompt Tuning的核心思想是将任务信息嵌入到输入文本中,而不是依赖模型的参数调整。通过优化提示,模型可以更好地理解任务上下文,并生成与任务相关的输出。提示的设计与优化成为模型表现的关键。

3. Prompt Tuning的实现机制
3.1 提示设计
  • 静态提示(Fixed Prompts)
### 提示调整概述 提示调整是一种新兴的技术,在自然语言处理领域内用于改进预训练模型的表现。不同于传统的微调方法,提示调整专注于修改输入给模型的文本形式——即所谓的“提示”,而不是直接改变模型参数[^1]。 在提示调整的过程中,通常会引入一些特定于任务的标记或短语作为前缀附加到原始输入之上。这些额外加入的内容旨在引导模型更好地理解上下文并作出更恰当的回答。对于某些复杂的NLP应用场景来说,这种方法能够显著提升性能而不必重新训练整个神经网络结构。 #### LAMM框架下的提示调整实践 具体而言,在多模态场景下,LAMM(Label Alignment for Multi-Modal Prompt Learning)提供了一种新颖的方式来进行提示调整。该方法特别适用于像CLIP这样的视觉-语言模型,其核心思想在于通过对类别标签进行编码来优化提示模板,从而使得模型能够在面对新任务时更加灵活高效地做出反应[^2]。 ```python class LAMMPromptTuning: def __init__(self, model, class_labels): self.model = model self.class_embeddings = {label: torch.nn.Parameter(torch.randn(768)) for label in class_labels} def forward(self, image_features): logits = [] for cls_emb in self.class_embeddings.values(): prompt_embedding = torch.cat([image_features, cls_emb.unsqueeze(0)], dim=-1) logit = self.model(prompt_embedding).squeeze() logits.append(logit) return torch.stack(logits) # 使用实例化后的对象进行推理 lammp_tuner = LAMMPromptTuning(pretrained_clip_model, ["dog", "cat"]) output_logits = lammp_tuner.forward(image_feature_vector) ``` 上述代码展示了如何基于LAMM实现一个多模态提示调整器。这里`pretrained_clip_model`代表已经过大规模数据集预训练得到的基础模型;而`["dog", "cat"]`则是目标分类任务所涉及的具体类别名称列表。通过这种方式定义了一个新的模块,可以在保持原有架构不变的情况下仅针对少量新增参数执行梯度下降操作,进而达到快速适应不同下游任务的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术与健康

你的鼓励将是我最大的创作动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值