游移方位惯导系统的指令角速度求解需要以指北方位惯导系统的指令角速度求解为基础。但是要注意的是T系与g系不再重合。下面我只简单介绍一下基本思想,涉及到的方向余弦阵的问题,请参考其他博文:
003备忘补充之惯性导航基本原理(刘保中)—9.1方向余弦与方向余弦矩阵
004旋转矩阵系统理解
指令角速度:
ω
⃗
i
T
T
=
C
e
T
ω
⃗
i
e
T
+
ω
⃗
e
T
T
\vec{\omega}_{iT}^{T}=C_e^T\vec{\omega}_{ie}^T+\vec{\omega}_{eT}^{T}
ωiTT=CeTωieT+ωeTT
首先对于 ω ⃗ i e T \vec{\omega}_{ie}^T ωieT
有:
ω
⃗
i
e
T
=
C
g
T
ω
⃗
i
e
g
\vec{\omega}_{ie}^T=C_g^T\vec{\omega}_{ie}^g
ωieT=CgTωieg
其中,
C g T C_g^T CgT为从g系到T系的关于游移方位角 α \alpha α旋转矩阵;
ω ⃗ i e g \vec{\omega}_{ie}^g ωieg的来历见010指北方位惯导系统的力学编排之平台的指令角速度。
其次对于 ω ⃗ e T T \vec{\omega}_{eT}^{T} ωeTT
ω ⃗ e T T = [ ω e T x T ω e T y T ω e T z T ] \vec{\omega}_{eT}^{T}= \left[ \begin{matrix} \omega_{eTx}^{T}\\ \\ \omega_{eTy}^{T}\\ \\ \omega_{eTz}^{T}\\ \end{matrix} \right] ωeTT=⎣⎢⎢⎢⎢⎡ωeTxTωeTyTωeTzT⎦⎥⎥⎥⎥⎤
可以通过下面的思路来求解x与y方向的角速度:
[ ω e T x T ω e T y T ] \begin{bmatrix} \omega_{eTx}^{T}\\ \\ \omega_{eTy}^{T}\\ \end{bmatrix} ⎣⎡ωeTxTωeTyT⎦⎤ ← C g T \xleftarrow[]{C_g^T} CgT [ ω e g x T ω e g y T ] \begin{bmatrix} \omega_{egx}^{T}\\ \\ \omega_{egy}^{T}\\ \end{bmatrix} ⎣⎡ωegxTωegyT⎦⎤ ← 速度转换为角速度 \xleftarrow[]{\text{速度转换为角速度} } 速度转换为角速度 [ V e g x T V e g y T ] \begin{bmatrix} V_{egx}^{T}\\ \\ V_{egy}^{T}\\ \end{bmatrix} ⎣⎡VegxTVegyT⎦⎤ ← C T g \xleftarrow[]{C_T^g } CTg [ V e T x T V e T y T ] \begin{bmatrix} V_{eTx}^{T}\\ \\ V_{eTy}^{T}\\ \end{bmatrix} ⎣⎡VeTxTVeTyT⎦⎤
对于z轴指令角速度,游移方位惯导系统定义为
ω c m d z T = ω i T z T = ω i e s i n L \omega_{cmdz}^T=\omega_{iTz}^T=\omega_{ie}sinL ωcmdzT=ωiTzT=ωiesinL
在求解 ω ⃗ i e T \vec{\omega}_{ie}^T ωieT中解得z项:
ω ⃗ i e z T = ω i e s i n L \vec{\omega}_{iez}^T=\omega_{ie}sinL ωiezT=ωiesinL
所以对于
ω
e
T
z
T
\omega_{eTz}^{T}
ωeTzT有:
ω
e
T
x
T
=
0
\omega_{eTx}^{T}=0
ωeTxT=0
代入指令角速度公式即可求解游移方位惯导系统的指令角速度。