011游移方位惯导系统的力学编排之指令角速度

游移方位惯导系统的指令角速度求解需要以指北方位惯导系统的指令角速度求解为基础。但是要注意的是T系g系不再重合。下面我只简单介绍一下基本思想,涉及到的方向余弦阵的问题,请参考其他博文:
003备忘补充之惯性导航基本原理(刘保中)—9.1方向余弦与方向余弦矩阵
004旋转矩阵系统理解

指令角速度:
ω ⃗ i T T = C e T ω ⃗ i e T + ω ⃗ e T T \vec{\omega}_{iT}^{T}=C_e^T\vec{\omega}_{ie}^T+\vec{\omega}_{eT}^{T} ω iTT=CeTω ieT+ω eTT

首先对于 ω ⃗ i e T \vec{\omega}_{ie}^T ω ieT

有:
ω ⃗ i e T = C g T ω ⃗ i e g \vec{\omega}_{ie}^T=C_g^T\vec{\omega}_{ie}^g ω ieT=CgTω ieg

其中,

C g T C_g^T CgT为从g系T系的关于游移方位角 α \alpha α旋转矩阵;

ω ⃗ i e g \vec{\omega}_{ie}^g ω ieg的来历见010指北方位惯导系统的力学编排之平台的指令角速度

其次对于 ω ⃗ e T T \vec{\omega}_{eT}^{T} ω eTT

ω ⃗ e T T = [ ω e T x T ω e T y T ω e T z T ] \vec{\omega}_{eT}^{T}= \left[ \begin{matrix} \omega_{eTx}^{T}\\ \\ \omega_{eTy}^{T}\\ \\ \omega_{eTz}^{T}\\ \end{matrix} \right] ω eTT=ωeTxTωeTyTωeTzT

可以通过下面的思路来求解x与y方向的角速度:

[ ω e T x T ω e T y T ] \begin{bmatrix} \omega_{eTx}^{T}\\ \\ \omega_{eTy}^{T}\\ \end{bmatrix} ωeTxTωeTyT ← C g T \xleftarrow[]{C_g^T} CgT [ ω e g x T ω e g y T ] \begin{bmatrix} \omega_{egx}^{T}\\ \\ \omega_{egy}^{T}\\ \end{bmatrix} ωegxTωegyT ← 速度转换为角速度 \xleftarrow[]{\text{速度转换为角速度} } 速度转换为角速度 [ V e g x T V e g y T ] \begin{bmatrix} V_{egx}^{T}\\ \\ V_{egy}^{T}\\ \end{bmatrix} VegxTVegyT ← C T g \xleftarrow[]{C_T^g } CTg [ V e T x T V e T y T ] \begin{bmatrix} V_{eTx}^{T}\\ \\ V_{eTy}^{T}\\ \end{bmatrix} VeTxTVeTyT

对于z轴指令角速度,游移方位惯导系统定义为
ω c m d z T = ω i T z T = ω i e s i n L \omega_{cmdz}^T=\omega_{iTz}^T=\omega_{ie}sinL ωcmdzT=ωiTzT=ωiesinL
在求解 ω ⃗ i e T \vec{\omega}_{ie}^T ω ieT中解得z项:
ω ⃗ i e z T = ω i e s i n L \vec{\omega}_{iez}^T=\omega_{ie}sinL ω iezT=ωiesinL

所以对于 ω e T z T \omega_{eTz}^{T} ωeTzT有:
ω e T x T = 0 \omega_{eTx}^{T}=0 ωeTxT=0

代入指令角速度公式即可求解游移方位惯导系统的指令角速度。

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值